题目

在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮。 请问有多少种放置方法,中国像棋中炮的行走方式大家应该很清楚吧.

输入格式

一行包含两个整数N,M,中间用空格分开.

输出格式

输出所有的方案数,由于值比较大,输出其mod 9999973

输入样例

1 3

输出样例

7

提示

除了在3个格子中都放满炮的的情况外,其它的都可以.

100%的数据中N,M不超过100

50%的数据中,N,M至少有一个数不超过8

30%的数据中,N,M均不超过6

题解

一道dp题

设\(f[i][j][k]\)表示前i行有j列放了一个炮,k列放了两个炮

每行最多放两个,分类讨论转移,是放在了没有炮的行还是有炮的,一个还是两个,全都放还是分别不同。

见代码

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 105,maxm = 100005,INF = 1000000000,P = 9999973;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 3) + (out << 1) + c - '0'; c = getchar();}
return out * flag;
}
int f[maxn][maxn][maxn],n,m;
int C(int x) {return x * (x - 1) >> 1;}
int main(){
n = read(); m = read();
f[0][0][0] = 1;
for (int i = 1; i <= n; i++)
for (int j = 0; j <= m; j++)
for (int k = 0; j + k <= m; k++){
f[i][j][k] = f[i - 1][j][k];
int& F = f[i][j][k];
if (j) F += (LL)(m - j - k + 1) * f[i - 1][j - 1][k] % P,F %= P;
if (j > 1) F += (LL)C(m - j - k + 2) * f[i - 1][j - 2][k] % P,F %= P;
if (k) F += (LL)(j + 1) * f[i - 1][j + 1][k - 1] % P,F %= P;
if (k > 1) F += (LL)C(j + 2) * f[i - 1][j + 2][k - 2] % P,F %= P;
if (k) F += (LL)j * (m - j - k + 1) % P * f[i - 1][j][k - 1] % P,F %= P;
}
int ans = 0;
for (int j = 0; j <= m; j++)
for (int k = 0; j + k <= m; k++)
ans = (ans + f[n][j][k]) % P;
printf("%d",ans);
return 0;
}

BZOJ1801 [Ahoi2009]chess 中国象棋 【dp】的更多相关文章

  1. bzoj1801: [Ahoi2009]chess 中国象棋 dp

    题意:在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮的行走方式大家应该很清楚吧. 题解:dp[i][j][k]表示到了第i行,有j列 ...

  2. BZOJ1801 Ahoi2009 chess 中国象棋 【DP+组合计数】*

    BZOJ1801 Ahoi2009 chess 中国象棋 Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮的行 ...

  3. 【BZOJ1801】[Ahoi2009]chess 中国象棋 DP

    [BZOJ1801][Ahoi2009]chess 中国象棋 Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮 ...

  4. bzoj1801: [Ahoi2009]chess 中国象棋(DP)

    1801: [Ahoi2009]chess 中国象棋 题目:传送门 题解: 表示自己的DP菜的抠脚 %题解... 定义f[i][j][k]表示前i行 仅有一个棋子的有j列 有两个棋子的有k个 的方案数 ...

  5. BZOJ1801 [Ahoi2009]chess 中国象棋(DP, 计数)

    题目链接 [Ahoi2009]chess 中国象棋 设$f[i][j][k]$为前i行,$j$列放了1个棋子,$k$列放了2个棋子的方案数 分6种情况讨论,依次状态转移. #include <b ...

  6. BZOJ 1801: [Ahoi2009]chess 中国象棋( dp )

    dp(i, j, k)表示考虑了前i行, 放了0个炮的有j列, 放了1个炮的有k列. 时间复杂度O(NM^2) -------------------------------------------- ...

  7. [luogu2051][bzoj1801][AHOI2009]chess中国象棋【动态规划】

    题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法.大家肯定很清楚,在中国象棋中炮的行走方式是 ...

  8. BZOJ1801 [Ahoi2009]chess 中国象棋 动态规划

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1801 题意概括 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请 ...

  9. BZOJ1801:[Ahoi2009]chess 中国象棋

    Time Limit: 10 Sec  Memory Limit: 64 MB Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置 ...

随机推荐

  1. jq中append(),appendTo(),after(),before(),prepend(),prependTo()的用法

    1. append():往当前元素的内部的后面追加元素; eg:$("div").append($("span"));  将span放在div内部的后面. 2. ...

  2. 自建ssr(谷歌云免费试用一年)

    近期我一个朋友的VPN到期了,他也不想再去续费,同时发现谷歌云第一年申请时是免费的,所以他就自己搭建了一个自己专属的VPN 以下是他的搭建教程:  本教程难点在于申请免费试用资格 谷歌云+ssr搭建免 ...

  3. Jquery中的CheckBox、RadioButton、DropDownList的取值赋值实现代码

    随着Jquery的作用越来越大,使用的朋友也越来越多.在Web中,由于CheckBox. Radiobutton . DropDownList等控件使用的频率比较高,就关系到这些控件在Jquery中的 ...

  4. IOS ViewTable

    // //  ViewController.swift //  UITableView // //  Created by lanou on 16/11/7. //  Copyright (c) 20 ...

  5. flask-bootstrap

    pip install bootstarp 使用bower安装bootstrap的命令是: bash$ bower install bootstrap不过问题出在如何安装bower上. 官方网站上这样 ...

  6. MitmProxy使用

    安装 tar -zxvf mitmproxy-3.0.1-linux.tar.gz sudo mv mitmproxy mitmdump mitmweb /usr/bin 详情 https://ger ...

  7. LAMP 搭建练习

    目录 LAMP 搭建 1:CentOS 7, lamp (module): http + php + phpMyAdmin + wordpress 192.168.1.7 配置虚拟主机 xcache ...

  8. Android系统编译环境及连接工具配置

    首先附上官网上关于环境搭建的地址:https://source.android.com/setup/build/initializing 官网目前建议的还是Ubuntu14.04,下面就是用的Ubun ...

  9. CentOS6 x86_64最小化安装优化脚本

    #!/bin/bash #centos6. x86_64系统最小化安装优化脚本 #系统基础优化,建议以root运行 if [ $USER != "root" ];then echo ...

  10. <html5 canvas>一个简单的矩形

    Html5: <!doctype html> <html> <head> <meta charset="UTF-8"> <ti ...