Rectangular Covering
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 2776   Accepted: 790

Description

n points are given on the Cartesian plane. Now you have to use some rectangles whose sides are parallel to the axes to cover them. Every point must be covered. And a point can be covered by several rectangles. Each rectangle should cover at least two points including those that fall on its border. Rectangles should have integral dimensions. Degenerate cases (rectangles with zero area) are not allowed. How will you choose the rectangles so as to minimize the total area of them?

Input

The input consists of several test cases. Each test cases begins with a line containing a single integer n (2 ≤ n ≤ 15). Each of the next n lines contains two integers xy (−1,000 ≤ xy ≤ 1,000) giving the coordinates of a point. It is assumed that no two points are the same as each other. A single zero follows the last test case.

Output

Output the minimum total area of rectangles on a separate line for each test case.

Sample Input

2
0 1
1 0
0

Sample Output

1

Hint

The total area is calculated by adding up the areas of rectangles used.

Source

 
题意:有n个顶点,现在需要用几个长方形取覆盖这些顶点,并且这些长方形中每一个都至少要覆盖住两个顶点。要用总面积尽量小的长方形覆盖住所有的顶点,至少要多少面积的长方形。
思路:先把所有可能的长方形都找出来,并记录每个长方形可以覆盖那几个顶点。设dp[S]:顶点的覆盖情况为状态S时需要的最少的长方形面积。则转移方程为:dp[S]=min(dp[S],dp[k]+j_area);(S=k|points),其中points为某一个长方形j所能覆盖的顶点集,即状态S可以由状态k通过加上长方形j所能覆盖的顶点集转移而来,j_area为长方形j的面积。
AC代码:
#define _CRT_SECURE_NO_DEPRECATE
#include <iostream>
#include<vector>
#include<algorithm>
#include<cstring>
#include<bitset>
#include<set>
#include<map>
#include<cmath>
using namespace std;
#define N_MAX 16
#define MOD 100000000
#define INF 0x3f3f3f3f
typedef long long ll;
struct point {
int x, y;
point(int x=,int y=):x(x),y(y) {}
}p[N_MAX];
struct Rec {
int area,points;//points代表当前的rectangle包含的顶点
Rec(int area=,int points=):area(area),points(points) {}
};
int calc_area(const point& a,const point& b) {//计算矩形面积
int s = max(abs(a.x - b.x),)*max(abs(a.y-b.y),);
return s;
}
bool is_inarea(const point &a,const point& b,const point& c) {//点c是否在a,b构成的矩形内
return ((c.x - a.x)*(c.x - b.x) <= && (c.y - a.y)*(c.y - b.y) <= ); }
int n;
int dp[ << N_MAX];//状态i下的最小面积
vector<Rec> rec;
int main() {
while (scanf("%d",&n)&&n) {
rec.clear();
for (int i = ; i < n;i++){
scanf("%d%d",&p[i].x,&p[i].y);
}
for (int i = ; i < n; i++) {
for (int j = i + ; j < n;j++) {//寻找所有的长方形,并且记录这些长方形包含了哪些顶点
Rec r=Rec(calc_area(p[i], p[j]), ( << i) | ( << j));
for (int k = ; k < n;k++) {
if (k == i || k == j)continue;
if (is_inarea(p[i], p[j], p[k]))
r.points |= << k;
}
rec.push_back(r);
}
}
memset(dp, INF, sizeof(dp));
int allstates = << n;
dp[] = ;
for (int i = ; i < rec.size();i++) {//每加入一个长方形
for (int j = ; j < allstates;j++) {
int newstate = j | rec[i].points;
if (dp[j] != INF&&newstate != j) {
dp[newstate] = min(dp[newstate], dp[j] + rec[i].area);
}
}
}
printf("%d\n",dp[allstates-]);//全部顶点都加入的情况下最小面积
}
return ;
}

poj 2836 Rectangular Covering的更多相关文章

  1. POJ 2836 Rectangular Covering(状压DP)

    [题目链接] http://poj.org/problem?id=2836 [题目大意] 给出二维平面的一些点,现在用一些非零矩阵把它们都包起来, 要求这些矩阵的面积和最小,求这个面积和 [题解] 我 ...

  2. poj 2836 Rectangular Covering(状态压缩dp)

    Description n points are given on the Cartesian plane. Now you have to use some rectangles whose sid ...

  3. POJ 2836 Rectangular Covering (状压DP)

    题意:平面上有 n (2 ≤ n ≤ 15) 个点,现用平行于坐标轴的矩形去覆盖所有点,每个矩形至少盖两个点,矩形面积不可为0,求这些矩形的最小面积. 析:先预处理所有的矩形,然后dp[s] 表示 状 ...

  4. POJ 2836 状压DP

    Rectangular Covering Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2727   Accepted: 7 ...

  5. POJ 2836:Rectangular Covering(状态压缩DP)

    题目大意:在一个平面内有若干个点,要求用一些矩形覆盖它们,一个矩形至少覆盖两个点,可以相互重叠,求矩形最小总面积. 分析: 数据很小,很容易想到状压DP,我们把点是否被覆盖用0,1表示然后放在一起得到 ...

  6. POJ2836 Rectangular Covering(状压DP)

    题目是平面上n个点,要用若干个矩形盖住它们,每个矩形上至少要包含2个点,问要用的矩形的面积和最少是多少. 容易反证得出每个矩形上四个角必定至少覆盖了两个点.然后就状压DP: dp[S]表示覆盖的点集为 ...

  7. Rectangular Covering [POJ2836] [状压DP]

    题意 平面上有 n (2 ≤ n ≤ 15) 个点,现用平行于坐标轴的矩形去覆盖所有点,每个矩形至少盖两个点,矩形面积不可为0,求这些矩形的最小面积. Input The input consists ...

  8. 我的刷题单(8/37)(dalao珂来享受切题的快感

    P2324 [SCOI2005]骑士精神 CF724B Batch Sort CF460C Present CF482A Diverse Permutation CF425A Sereja and S ...

  9. poj 1266 Cover an Arc.

    http://poj.org/problem?id=1266 Cover an Arc. Time Limit: 1000MS   Memory Limit: 10000K Total Submiss ...

随机推荐

  1. fopen打开文件失败的问题

    fopen打开带中文路径或含中文名称的文件失败. 解决这个问题有两个方法:一是改用_wfopen,这个函数接受两个宽字符类型,函数原型如下: FILE* _wfopen(const wchar_t* ...

  2. C/C++程序基础 (五)位运算

    C++中四种转换运算符的区分 const_cast 修改const和volatile属性 reinterpret_cast 指针间类型转换或者指针和整形的转换.二进制重新翻译. static_cast ...

  3. 数据存储之使用mysql数据库存储数据

    推荐安装mysql5.7环境: 官网下载:https://dev.mysql.com/downloads/installer/5.7.html 如果提示没有.NET Framework框架.那么就在提 ...

  4. hihocoder1015 kmp算法

    #1015 : KMP算法 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho是一对好朋友,出生在信息化社会的他们对编程产生了莫大的兴趣,他们约定好互相帮助,在 ...

  5. POJ 3414 BFS 输出过程

    Pots Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 17456   Accepted: 7407   Special J ...

  6. 大数运算:HDU-1042-N!(附N!位数的计算)

    解题心得: 这里使用了10000进制.很明显,因为是n!所以单个最大的数是10000*10000,使用万进制. 可以借鉴高精度的加法,单个乘了之后在进位. 很坑的一点,0!=1,数学不好WA了三次,尴 ...

  7. shell脚本杀掉指定进程下所有子进程(包括子进程的子进程)

    搜索了网上好像并没有杀掉指定进程下所有子进程(包括子进程的子进程)的脚本,自己琢磨写了一版,虽说比较简单,但希望分享大家,帮助需要的人 #!/bin/sh # 递归找到进程最底层子进程并杀除. mai ...

  8. Redis实现之事件

    事件 Redis服务器是一个事件驱动程序,服务器需要处理以下两类事情: 文件事件(file event):Redis服务器通过套接字与客户端(或者其他Redis服务器)进行连接,而文件事件就是服务器对 ...

  9. [转]Git for windows 下vim解决中文乱码的有关问题

    Git for windows 下vim解决中文乱码的问题 原文链接:Git for windows 下vim解决中文乱码的有关问题 1.右键打开Git bash: 2.cd ~ 3.vim .vim ...

  10. Spring Boot 学习系列(03)—jar or war,做出你的选择

    此文已由作者易国强授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 两种打包方式 采用Spring Boot框架来构建项目,我们对项目的打包有两种方式可供选择,一种仍保持原有的 ...