Pluggable Similarity Algorithms

Before we move on from relevance and scoring, we will finish this chapter with a more advanced subject: pluggable similarity algorithms. While Elasticsearch uses the Lucene’s Practical Scoring Function as its default similarity algorithm, it supports other algorithms out of the box, which are listed in the Similarity Modules documentation.

Okapi BM25

The most interesting competitor to TF/IDF and the vector space model is called Okapi BM25, which is considered to be a state-of-the-art ranking function. BM25 originates from the probabilistic relevance model, rather than the vector space model, yet the algorithm has a lot in common with Lucene’s practical scoring function.

Both use term frequency, inverse document frequency, and field-length normalization, but the definition of each of these factors is a little different. Rather than explaining the BM25 formula in detail, we will focus on the practical advantages that BM25 offers.

Term-frequency saturation

Both TF/IDF and BM25 use inverse document frequency to distinguish between common (low value) words and uncommon (high value) words. Both also recognize (see Term frequency) that the more often a word appears in a document, the more likely is it that the document is relevant for that word.

However, common words occur commonly. The fact that a common word appears many times in one document is offset by the fact that the word appears many times in all documents.

However, TF/IDF was designed in an era when it was standard practice to remove the most common words (or stopwords, see Stopwords: Performance Versus Precision) from the index altogether. The algorithm didn’t need to worry about an upper limit for term frequency because the most frequent terms had already been removed.

In Elasticsearch, the standard analyzer—the default for string fields—doesn’t remove stopwords because, even though they are words of little value, they do still have some value. The result is that, for very long documents, the sheer number of occurrences of words like the and and can artificially boost their weight.

BM25, on the other hand, does have an upper limit. Terms that appear 5 to 10 times in a document have a significantly larger impact on relevance than terms that appear just once or twice. However, as can be seen in Figure 34, “Term frequency saturation for TF/IDF and BM25”, terms that appear 20 times in a document have almost the same impact as terms that appear a thousand times or more.

This is known as nonlinear term-frequency saturation.

Figure 34. Term frequency saturation for TF/IDF and BM25

Field-length normalization

In Field-length norm, we said that Lucene considers shorter fields to have more weight than longer fields: the frequency of a term in a field is offset by the length of the field. However, the practical scoring function treats all fields in the same way. It will treat all title fields (because they are short) as more important than all body fields (because they are long).

BM25 also considers shorter fields to have more weight than longer fields, but it considers each field separately by taking the average length of the field into account. It can distinguish between a shorttitle field and a long title field.

In Query-Time Boosting, we said that the title field has a natural boost over the bodyfield because of its length. This natural boost disappears with BM25 as differences in field length apply only within a single field.


摘自:https://www.elastic.co/guide/en/elasticsearch/guide/current/pluggable-similarites.html

ES BM25 TF-IDF相似度算法设置——的更多相关文章

  1. ES 相似度算法设置(续)

    Tuning BM25 One of the nice features of BM25 is that, unlike TF/IDF, it has two parameters that allo ...

  2. 信息检索中的TF/IDF概念与算法的解释

    https://blog.csdn.net/class_brick/article/details/79135909 概念 TF-IDF(term frequency–inverse document ...

  3. 基于TF/IDF的聚类算法原理

        一.TF/IDF描述单个term与特定document的相关性TF(Term Frequency): 表示一个term与某个document的相关性. 公式为这个term在document中出 ...

  4. ES设置查询的相似度算法

    similarity Elasticsearch allows you to configure a scoring algorithm or similarity per field. The si ...

  5. Elasticsearch由浅入深(十)搜索引擎:相关度评分 TF&IDF算法、doc value正排索引、解密query、fetch phrase原理、Bouncing Results问题、基于scoll技术滚动搜索大量数据

    相关度评分 TF&IDF算法 Elasticsearch的相关度评分(relevance score)算法采用的是term frequency/inverse document frequen ...

  6. 25.TF&IDF算法以及向量空间模型算法

    主要知识点: boolean model IF/IDF vector space model     一.boolean model     在es做各种搜索进行打分排序时,会先用boolean mo ...

  7. 55.TF/IDF算法

    主要知识点: TF/IDF算法介绍 查看es计算_source的过程及各词条的分数 查看一个document是如何被匹配到的         一.算法介绍 relevance score算法,简单来说 ...

  8. tf–idf算法解释及其python代码实现(下)

    tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四 ...

  9. tf–idf算法解释及其python代码实现(上)

    tf–idf算法解释 tf–idf, 是term frequency–inverse document frequency的缩写,它通常用来衡量一个词对在一个语料库中对它所在的文档有多重要,常用在信息 ...

随机推荐

  1. 【LeetCode】Search in Rotated Sorted Array——旋转有序数列找目标值

    [题目] Suppose a sorted array is rotated at some pivot unknown to you beforehand. (i.e., 0 1 2 4 5 6 7 ...

  2. Time倒计时

    commitTimeDate = new Date("2016/11/9 10:02:40").getTime() + 24*60*60*1000;//截止时间 myDate = ...

  3. Centos6.0使用第三方YUM源(EPEL,RPMForge,RPMFusion)

    yum是centos下很方便的rpm包管理工具,配置第三方软件库使你的软件库更加丰富.以下简单的讲下配置的步骤. 首先,需要安装yum-priorities插件: yum install yum-pr ...

  4. Codeforces Round #263 (Div. 2) proB

    题目: B. Appleman and Card Game time limit per test 1 second memory limit per test 256 megabytes input ...

  5. Minify把CSS和JS压缩和削减

    Minify把CSS和JS压缩和削减(Minify:去掉空格回车符等),以及把多个CSS,JS文件整合到一个文件里.不要以为你的大带宽没有必要进行这类优化.使用它的理由更重要的是文件合并,而不是压缩, ...

  6. 30天自制操作系统(三)进入32位模式并导入C语言

    1 制作真正的IPL IPL(Initial Program Loader),启动程序装载器,但是之前并没有实质性的装载任何程序,这次作者要开始装载程序了. 虽然现在开发的操作系统啥功能也没有,作者说 ...

  7. HDFS源码分析数据块汇报之损坏数据块检测checkReplicaCorrupt()

    无论是第一次,还是之后的每次数据块汇报,名字名字节点都会对汇报上来的数据块进行检测,看看其是否为损坏的数据块.那么,损坏数据块是如何被检测的呢?本文,我们将研究下损坏数据块检测的checkReplic ...

  8. 搜狐新闻APP是如何使用HUAWEI DevEco IDE快速集成HUAWEI HiAI Engine

    6月12日,搜狐新闻APP最新版本在华为应用市场正式上线啦! 那么,这一版本的搜狐新闻APP有什么亮点呢? 先抛个图,来直接感受下—— ​ 模糊图片,瞬间清晰! 效果杠杠的吧. 而藏在这项神操作背后的 ...

  9. Appium python unittest pageobject如何实现加载多个case

    学习了Appium python项目施展的课程小伙伴都会有一个疑问,说现在所有的case都是通过一个suite进行一个方法一个方法进行添加的,但是在实际过程中我们不希望这样,我们做出来的功能是这样: ...

  10. python 基础 8.3 match方法和search方法

    一,正则对象的split 方法 split(string[,maxsplit]) 按照能够匹配的字串讲string 分割后返回列表.maxsplit 用于指定最大分割次数,不指定将全部分割.来查找符合 ...