Vue文件 引入.js文件 的组件
Vue.component('remote-script', { render: function (createElement) {
var self = this;
return createElement('script', {
attrs: {
type: 'text/javascript',
src: this.src
},
on: {
load: function (event) {
self.$emit('load', event);
},
error: function (event) {
self.$emit('error', event);
},
readystatechange: function (event) {
if (this.readyState == 'complete') {
self.$emit('load', event);
}
}
}
});
}, props: {
src: {
type: String,
required: true
}
}
});
Vue文件 引入.js文件 的组件的更多相关文章
- vue项目 引入js文件
例如我想将laydate.js引到vue项目中 将用到的js文件放到static文件夹内,在项目的根目录下的index.html内引入 <script src="static/js/l ...
- jsp文件引入js文件的方式(项目部署于web容器中)
在页面中引入javascript文件的方式是多种多样的,本文介绍两种. 通过<script>标签插入js文件 通过这种方式引入的js,写对js文件和jsp文件的路径很重要.下面给出一个项目 ...
- Vue在单独引入js文件中使用ElementUI的组件
Vue在单独引入js文件中使用ElementUI的组件 问题场景: 我想在vue中的js文件中使用elementUI中的组件,因为我在main.js中引入了element包和它的css,并挂载到了全局 ...
- vue脚手架使用swiper /引入js文件/引入css文件
1.安装vue-cli 参考地址:https://github.com/vuejs/vue-cli 如果不使用严格语法需要在后三项打no:(加了挺头疼的,老是报错,但是对自己的代码规范性也是有很大的帮 ...
- vue引入swiper vue使用swiper vue脚手架使用swiper /引入js文件/引入css文件
vue引入swiper vue使用swiper vue脚手架使用swiper /引入js文件/引入css文件 ------------------------------------------- ...
- vue引入js文件时报This dependency was not found:错误
vue引入js文件时报This dependency was not found:错误 使用了很多方法,原来是这么小的问题,特此记录 解决办法 添加 ./
- 1.在html中引入js文件和Jquery框架
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- jsp引入js文件
转自:http://blog.csdn.net/ppzhangj/article/details/7859628 1)引入的js文件出错, 检查方法:将Js的内容写在当前的页面的<script& ...
- 使用其他服务器引入JS文件
使用其他服务器引入JS文件,1,减轻服务器压力2,速度快3,可以缓存 cdnjs库,更新比较快https://cdnjs.com/ cdn库 引入JS文件如:jquerybootcdn : https ...
随机推荐
- 一起来学linux:FTP服务器搭建
首先安装vsftpd: apt install vsftpd有下面几个重要的配置文件:1 /etc/vsftpd.conf. 这个是vsftpd的配置文件.通过“参数=设置值”的方式来设置的. 2 / ...
- failed to load AppCompat ActionBar with unkNown error
解决办法: 在AndroidManifest.xml文件中找到 全局样式文件 Theme,如图: 进入到这个文件,在前面增加 "Base".,如图:
- Python: PS 滤镜--USM 锐化
本文用 Python 实现 PS 滤镜中的 USM 锐化效果,具体的算法原理和效果可以参考之前的博客: http://blog.csdn.net/matrix_space/article/detail ...
- 51Nod - 1055:最长等差数列 (求最长的等差数列)
N个不同的正整数,找出由这些数组成的最长的等差数列. 例如:1 3 5 6 8 9 10 12 13 14 等差子数列包括(仅包括两项的不列举) 1 3 5 1 5 9 13 3 6 9 12 ...
- Preface Numbering
链接 分析:先打表需要用到的罗马数字,然后暴力转换,最后统计一下即可 /* PROB:preface ID:wanghan LANG:C++ */ #include "iostream&qu ...
- MTK USB 子系统
一.USB 子系统初始化 1. kernel/drivers/usb/core/usb.c subsys_initcall(usb_init); static int __init usb_init( ...
- docker --help 详解
[root@c1 _src]# dockerd --help Usage: dockerd [OPTIONS] A self-sufficient runtime for containers. Op ...
- ubuntu 禁止错误信息 report 问题弹出
发现ubuntu只要出现点问题就会提示要不要report error, 光点cancel就点烦了. 而且今天重新安装了一台ubuntu结果开机就蹦出error, 好烦啊. 下面说个特别有效的解决办法, ...
- 机器学习之SVM支持向量机
前言 以下内容是个人学习之后的感悟,转载请注明出处~ 简介 支持向量机(support vector machine),简称SVM,通俗来讲,它是一种二类分类模型,其基本模型定义 ...
- CodeForces 1103E. Radix sum
题目简述:对任意两个(正)十进制数$a = \overline{a_{k-1}\dots a_1a_0}$和$b = \overline{b_{k-1}\dots b_1b_0}$,定义其[十进制按位 ...