【题解】CF45G Prime Problem

哥德巴赫板子题?

\(\frac{n(n+1)}{2}\)若是质数,则不需要分了。

上式 若是奇数,那么拆成2和另一个数。

上式 若是偶数吗,直接\(O(n)\)枚举。

加上暴力判质数,复杂度\(O(n\sqrt{n})\)

没写,蒯别人的吧

//老写不对 交个题解看题解对不对
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<queue>
#include<bitset>
#include<vector>
#include<map>
#include<ctime>
#include<cstdlib>
#include<set>
#include<bitset>
#include<stack>
#include<list>
#include<cmath>
using namespace std;
#define RP(t,a,b) for(register int (t)=(a),edd_=(b);t<=edd_;++t)
#define DRP(t,a,b) for(register int (t)=(a),edd_=(b);t>=edd_;--t)
#define ERP(t,a) for(int t=head[a];t;t=e[t].nx)
#define Max(a,b) ((a)<(b)?(b):(a))
#define Min(a,b) ((a)<(b)?(a):(b))
#define TMP template<class ccf>
#define lef L,R,l,mid,pos<<1
#define rgt L,R,mid+1,r,pos<<1|1
#define midd register int mid=(l+r)>>1
#define chek if(R<l||r<L)return
#define all 1,n,1
#define pushup(x) seg[(x)]=seg[(x)<<1]+seg[(x)<<1|1]
typedef long long ll;
TMP inline ccf qr(ccf k){
char c=getchar();
ccf x=0;
int q=1;
while(c<48||c>57)
q=c==45?-1:q,c=getchar();
while(c>=48&&c<=57)
x=x*10+c-48,c=getchar();
if(q==-1)
x=-x;
return x;
}
const int _=6005;
inline int read(){
return qr(1);
}
int n,ans[_];
void Print(){
for(int i=1;i<=n;++i)
printf("%d ",ans[i]);
puts("");
}
bool check(int x){
int q=sqrt(x);
for(int i=2;i<=q;++i)
if(!(x%i))return 0;
return 1;
}
int main(){
n=read();
int m=(n+1)*n/2;
for(int i=1;i<=n;++i)ans[i]=1;
if(check(m)){Print();return 0;}
if(m&1&&!check(m-2))ans[3]=3,m-=3;
for(int i=2;i<=n;++i)
if(check(i)&&check(m-i))
{ans[i]=2;break;}
Print();
return 0;
}

【题解】CF45G Prime Problem的更多相关文章

  1. [CF45G]Prime Problem

    题目大意:将$1$到$n(1<n\leqslant6000)$分成若干组数,要求每组数的和均为质数,若存在一种分配方式,输出每个数所在的组的编号,有多组解输出任意一组解,若不存在,输出$-1$ ...

  2. CF45G Prime Problem 构造+数论

    正解:构造+数论 解题报告: 传送门! maya这题好神仙啊我jio得,,,反正我当初听的时候是没有太懂的,,, 首先这题你要知道一些必要的数学姿势 比如哥德巴赫猜想巴拉巴拉的 然后直接讲题趴QAQ ...

  3. PAT甲题题解-1059. Prime Factors (25)-素数筛选法

    用素数筛选法即可. 范围long int,其实大小范围和int一样,一开始以为是指long long,想这就麻烦了该怎么弄. 而现在其实就是int的范围,那难度档次就不一样了,瞬间变成水题一枚,因为i ...

  4. 【题解】Tree-String Problem Codeforces 291E AC自动机

    Prelude 传送到Codeforces:(/ω\)--- (/ω•\) Solution 很水的一道题. 对查询的串建出来AC自动机,然后树上随便跑跑就行了. 为什么要写这篇题解呢? 我第一眼看到 ...

  5. P1832题解 A+B Problem(再升级)

    万能的打表 既然说到素数,必须先打素数表筛出素数, 每个素数可以无限取,这就是完全背包了. 这次打个质数表: bool b[1001]={1,1,0,0,1,0,1,0,1,1,1,0,1,0,1,1 ...

  6. 题解:T103342 Problem A. 最近公共祖先

    题目链接 题目大意 求每个点对的lca深度的和 以每一层分析,得出通式 由于1e9的数据范围要化简表达式得到O(能过) 瞎搞后就是2^(2n+2)-(4n+2)*2^n-2 code: #includ ...

  7. CF45G

    考虑哥德巴赫猜想:一个偶数可以被拆分两个质数. 所以我们考虑如果不是偶数的话,我们拆分成\((2,m-2)\)或者\((3,del(m - 3))\) 如果是偶数的话\(del(m)\),我们直接枚举 ...

  8. 暑假训练round 3 题解

    今天做题运气出奇的好,除了几处小错误调试之后忘记改掉了……最后还AK了……虽然题目不难,学长也说是福利局,但是对个人的鼓励作用还是挺大的……至此暑假训练就结束了,也算没有遗憾……. 题解如下: Pro ...

  9. [Luogu 1919]【模板】A*B Problem升级版(FFT快速傅里叶)

    Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. Output 输出 ...

随机推荐

  1. Oracle SID爆破工具SidGuess

    Oracle SID爆破工具SidGuess   在Oracle中,SID是System IDentifier的缩写.SID是一个数据库的唯一标识符.当用户希望远程连接Oracle数据库时,则需要知道 ...

  2. [AHOI2005] SHUFFLE 洗牌

    1965: [Ahoi2005]SHUFFLE 洗牌 Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 952  Solved: 630[Submit][St ...

  3. Mysql乱码问题解决历程

    可能是因为看了太多网上的关于这个问题的解决办法,可能当时是我自己没有看明白也或许是情况不一样,反正都没有解决我当初遇到的问题,现在想想可能是自己当初太无知了,第二个原因是原来大多数情况下是在windo ...

  4. String、Stringbuffer和Stringbuilder之间的区别

    关于这三个类在字符串处理中的位置不言而喻,那么他们到底有什么优缺点,到底什么时候该用谁呢?下面我们从以下几点说明一下 1.在执行速度方面:Stringbuilder>Stringbuffer&g ...

  5. 【spring boot】12.spring boot对多种不同类型数据库,多数据源配置使用

    2天时间,终于把spring boot下配置连接多种不同类型数据库,配置多数据源实现! ======================================================== ...

  6. HDU1421

    提交啦n次一直WA,这个bug找啦几个小时,最终才发现数组开小啦,真是遗憾.这是一个典型的DP问题,题目要求从n个中选出k对使得最终疲劳度最小.首先对物品质量a[n]进行一次排序,用dp[i][j]表 ...

  7. 【2048小游戏】——CSS/原生js爬坑之纯CSS模态对话框&游戏结束

    引言:2048小游戏的结束界面,使用纯CSS制作模态对话框,一般做模态对话框都会使用BootStrap自带的模态对话框组件方便使用,但在制作要运行在移动端的小项目时,就不能使用BootStrap,因为 ...

  8. .NET中XML 注释 SandCastle 帮助文件.hhp 使用HTML Help Workshop生成CHM文件

    一.摘要 在本系列的第一篇文章介绍了.NET中XML注释的用途, 本篇文章将讲解如何使用XML注释生成与MSDN一样的帮助文件.主要介绍NDoc的继承者:SandCastle. .SandCastle ...

  9. leetcode 46-Permutations and 47-Permutations II

    Permutations Given a collection of numbers, return all possible permutations. For example, [1,2,3] h ...

  10. Maven零散笔记——配置Nexus

    安装&配置Nexus 解压后,应该获得如下目录结构: nexus-2.0.6是nexus服务主目录 sonatype-work是真正的仓库,同时包含了nexus的配置,如定时任务.用户配置等 ...