LOJ10092半连通子图
Description
一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意
两点u,v,存在一条u到v的有向路径或者从v到u的有向路径。若G'=(V',E')满足V'?V,E'是E中所有跟V'有关的边,
则称G'是G的一个导出子图。若G'是G的导出子图,且G'半连通,则称G'为G的半连通子图。若G'是G所有半连通子图
中包含节点数最多的,则称G'是G的最大半连通子图。给定一个有向图G,请求出G的最大半连通子图拥有的节点数K
,以及不同的最大半连通子图的数目C。由于C可能比较大,仅要求输出C对X的余数。
Input
第一行包含两个整数N,M,X。N,M分别表示图G的点数与边数,X的意义如上文所述接下来M行,每行两个正整
数a, b,表示一条有向边(a, b)。图中的每个点将编号为1,2,3…N,保证输入中同一个(a,b)不会出现两次。N ≤1
00000, M ≤1000000;对于100%的数据, X ≤10^8
Output
应包含两行,第一行包含一个整数K。第二行包含整数C Mod X.
Sample Input
1 2
2 1
1 3
2 4
5 6
6 4
Sample Output
3
1 #include<bits/stdc++.h>
2 using namespace std;
3 const int maxn=1e5+10,maxm=1e6+10;
4 struct edge
5 {
6 int u,v,nxt;
7 }e[maxm],ee[maxm];
8 int head[maxn],js,headd[maxn],jss;
9 void addage(edge e[],int head[],int &js,int u,int v)
10 {
11 e[++js].u=u;e[js].v=v;
12 e[js].nxt=head[u];head[u]=js;
13 }
14 int dfn[maxn],low[maxn],cnt,st[maxn],top,lt[maxn],lts,ltn[maxn];
15 void tarjan(int u)
16 {
17 dfn[u]=low[u]=++cnt;
18 st[++top]=u;
19 for(int i=head[u];i;i=e[i].nxt)
20 {
21 int v=e[i].v;
22 if(!dfn[v])
23 {
24 tarjan(v);
25 low[u]=min(low[u],low[v]);
26 }
27 else if(!lt[v])
28 low[u]=min(low[u],dfn[v]);
29 }
30 if(dfn[u]==low[u])
31 {
32 lt[u]=++lts;ltn[lts]++;
33 while(st[top]!=u)lt[st[top--]]=lts,ltn[lts]++;
34 --top;
35 }
36 }
37 int n,m,x;
38 int f[maxn],ff[maxn];
39 int cd[maxn],rd[maxn];
40 int maxd,maxf;
41 int pc[maxn];
42 queue<int>q;
43 void dfs()
44 {
45 while(!q.empty())
46 {
47 int u=q.front();q.pop();
48 maxd=max(maxd,f[u]);
49 for(int i=headd[u];i;i=ee[i].nxt)
50 {
51 int v=ee[i].v;
52 rd[v]--;
53 if(rd[v]==0)q.push(v);
54 if(pc[v]==u)continue;
55 if(f[u]+ltn[v]>f[v])
56 {
57 f[v]=f[u]+ltn[v];
58 ff[v]=ff[u];
59
60 }
61 else if(f[u]+ltn[v]==f[v])
62 {
63 ff[v]=(ff[u]+ff[v])%x;
64 }
65 pc[v]=u;
66 }
67 }
68 }
69 int main()
70 {
71 scanf("%d%d%d",&n,&m,&x);
72 for(int u,v,i=1;i<=m;++i)
73 {
74 scanf("%d%d",&u,&v);
75 addage(e,head,js,u,v);
76 }
77 for(int i=1;i<=n;++i)
78 if(!dfn[i])tarjan(i);
79 for(int u=1;u<=n;++u)
80 for(int i=head[u];i;i=e[i].nxt)
81 if(lt[e[i].u]!=lt[e[i].v])addage(ee,headd,jss,lt[e[i].u],lt[e[i].v]),cd[lt[e[i].u]]++,rd[lt[e[i].v]]++;
82 for(int i=1;i<=lts;++i)
83 if(rd[i]==0)q.push(i),f[i]=ltn[i],ff[i]=1;
84 dfs();
85 for(int i=1;i<=lts;++i)
86 {
87 if(f[i]==maxd)maxf=(maxf+ff[i])%x;
88 }
89 printf("%d\n%d\n",maxd,maxf);
90 return 0;
91 }
LOJ10092半连通子图的更多相关文章
- LOJ-10092(最大半连通子图)
题目连通:传送门 思路: 题目定义很清晰,然后就不会了QAQ…… 后来看了书,先缩点,然后再用拓扑排序找到最长的链子的节点数(因为缩点后所有点都是一个强连通分量,所以找最长的链子就是最大限度包含 点的 ...
- 最大半连通子图 bzoj 1093
最大半连通子图 (1.5s 128MB) semi [问题描述] 一个有向图G = (V,E)称为半连通的(Semi-Connected),如果满足:∀ u, v ∈V,满足u->v 或 v - ...
- BZOJ1093 [ZJOI2007]最大半连通子图
Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u ...
- BZOJ1093 最大半连通子图
Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意 两点u,v,存在一条u到v的有向路径或者从v到 ...
- [BZOJ]1093 最大半连通子图(ZJOI2007)
挺有意思的一道图论. Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:∀u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v ...
- BZOJ1093 ZJOI2007最大半连通子图(缩点+dp)
发现所谓半连通子图就是缩点后的一条链之后就是个模板题了.注意缩点后的重边.写了1h+真是没什么救了. #include<iostream> #include<cstdio> # ...
- bzoj 1093 最大半连通子图 - Tarjan - 拓扑排序 - 动态规划
一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V ...
- 【刷题】BZOJ 1093 [ZJOI2007]最大半连通子图
Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意 两点u,v,存在一条u到v的有向路径或者从v到 ...
- BZOJ 1093 最大半连通子图 题解
1093: [ZJOI2007]最大半连通子图 Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 2767 Solved: 1095[Submit][S ...
随机推荐
- MVC和WebApi路由机制比较
1.MVC使用的路由 在MVC中,默认路由机制是通过解析url路径来匹配Action.比如:/User/GetList,这个url就表示匹配User控制器下的GetList方法,这是MVC路由的默认解 ...
- kill的使用
Linux中Kill进程的N种方法 (2011-12-23 17:27:59) 转载▼ 标签: 杂谈 分类: ubuntu系统操作 常规篇: 首先,用ps查看进程,方法如下: $ ps -ef -- ...
- maven方式使用jetty
Jetty 是一个开源的servlet容器,它为基于Java的web容器,例如JSP和servlet提供运行环境.Jetty是使用Java语言编写的,它的API以一组JAR包的形式发布.开发人员可以将 ...
- 2.1 关系型数据的收集--Sqoop
Sqoop应用场景: 1.数据迁移,将关系型数据库中的数据导入Hadoop存储系统 2.可视化分析结果,将Hadoop处理之后产生的结果导入关系型数据库,以便进行可视化展示 3.数据增量导入:减少ha ...
- 园子的品牌专区上新:NoSQL 数据库佼佼者 Aerospike
品牌专区是园子去年推出的新楼盘,为优秀的科技企业在园子里提供一个地方,展示自己的品牌,分享自己的技术内容. 最近我们和国外领先的 NoSQL 数据库厂商 Aerospike 达成了合作,入驻了园子的品 ...
- 【基础】1001_Hello,World!
题目相关 [题目描述] 编写一个能够输出"Hello,World!"的程序,这个程序常常作为一个初学者接触一门新的编程语言所写的第一个程序,也经常用来测试开发.编译环境是否能够正常 ...
- 百度智能(文本识别),API传图OC代码与SDK使用
百度智能中的文本识别中的身份证识别,有API方式和SDK方式 API方式 百度智能(文本识别),百度API传图没有提供OC的示例,这里提供一下 - (void)OCTest:(NSString*)to ...
- LeetCode704 二分查找
给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1. 示例 1: 输入: num ...
- 通过show profile分析sql语句
set profling=1; select count(*) from xuehao; show profiles; show profile for query 1; mysql> set ...
- 给mysql选择调度策略
在gun/linux上,队列调度决定了到块设备的请求实际上发送到底层设置的顺序.默认情况下是cfg(完全公平排队)策略,随意使用的笔记本和台式机使用中个调度策略没有问题,并且有助于防止io饥饿,但是用 ...