description

给定 n 点 m 边简单有向图,有边权。

q 次询问,每次给出 xi。可以增加某些边的边权,要求总增加量小于等于 xi,最大化点 1 到点 n 的最短路。

原题链接。

solution

可以去看看dls表演如何正确切这道题:读完题发现是原题,找题解读了一遍,过了。

设答案的下界为 \(D\),边权增长量为 \(a_{u, v}\),最短路为 \(d_i\)。

可以根据最短路的三角不等式列出如下线性规划式:

\[\min\{\sum_{(u,v)\in E}a_{u,v}\} \\
\begin{cases}
d_u - d_v+a_{u, v}\geq -w_{u,v} \\
d_n - d_1\geq D \\
d_i\geq 0, a_{u,v} \geq 0
\end{cases}
\]

如果目标函数 \(\leq x_i\),则 \(D\) 是一个合法的下界。

考虑它的对偶问题:

\[\max\{D\times f-\sum_{(u,v)\in E}w_{u,v}\times b_{u,v}\} \\
\begin{cases}
\sum_{i}b_{u,i}-\sum_{i}b_{i,u}\leq 0 & u\not=1,n \\
\sum_{i}b_{1,i}-\sum_{i}b_{i,1}-f\leq 0 \\
\sum_{i}b_{n,i}-\sum_{i}b_{i,n}+f\leq 0 \\
0\leq b_{u,v}\leq 1,0\leq f

\end{cases}
\]

注意到这个约束条件长得很像 “流量守恒” + “容量限制”。

事实上,这就是网络流的线性规划式(引用 freopen 的一句话:在一个图中,每个点入度 ≤ 出度即可构成入度 = 出度)。其中 \(1\) 为源点,\(n\) 为汇点,\(f\) 为整个网络的流量。

记 \(c = \sum w_{u,v}\times b_{u,v}\),则已知 \(f\) 时我们需要最小化 \(c\)。跑最小费用流即可。

由于 \(D\times f-c\leq x_i\),可以得到 \(D\leq\frac{x_i+c}{f}\)。

注意到二元组 \((f,c)\) 只有 \(O(n)\) 个,每次增广单位流量可以找到所有的二元组。

于是可以 \(O(n)\) 处理一次询问(也可以处理出凸包 + 二分 \(O(\log)\) 处理一次询问)。


还有另一种转化问题的方法:

一样地设下界为 \(D\),边权增长量为 \(a_i\)。考虑 1 -> n 的所有路径 \(L_p\),有线性规划式:

\[\min\{\sum_{(u,v)\in E}a_{u,v}\leq x_i\} \\
\begin{cases}
\sum_{(u,v)\in L_p}(w_{u,v}+a_{u,v})\geq D\\
a_{u,v}\geq 0
\end{cases}
\]

对偶:

\[\max\{\sum_{p}y_p\times(D - \sum_{(u,v)\in L_p} w_{u,v})\} \\
\begin{cases}
\sum y_p \leq 1 & (u, v)\in L_p \\
y_p \geq 0
\end{cases}
\]

可以看成选 \(k\) 条路径,每条边只能被一条路径经过,最小化 \(\sum_{p}y_p\times\sum_{(u,v)\in L_p} w_{u,v}\)。

这一步以后的过程就和上面的推导是一样的。

accepted code

#include <queue>
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std; typedef pair<int, int> pii;
#define pr make_pair
#define fi first
#define se second namespace fgraph{
const int MAXV = 50;
const int MAXE = 10*MAXV*MAXV;
const int INF = (1 << 30); struct edge{
int to, cap, flow, cost;
edge *nxt, *rev;
}edges[MAXE + 5], *adj[MAXV + 5], *cur[MAXV + 5], *ecnt = edges;
void addedge(int u, int v, int c, int w) {
edge *p = (++ecnt), *q = (++ecnt);
(*p) = (edge){v, c, 0, w, adj[u], q}, adj[u] = p;
(*q) = (edge){u, 0, 0, -w, adj[v], p}, adj[v] = q;
}
int d[MAXV + 5], h[MAXV + 5], s, t;
bool relabel() {
for(int i=s;i<=t;i++)
h[i] += d[i], d[i] = INF, cur[i] = adj[i];
priority_queue<pii, vector<pii>, greater<pii> >que;
que.push(pr(d[t] = 0, t));
while( !que.empty() ) {
int k = que.top().fi, x = que.top().se; que.pop();
if( k != d[x] ) continue;
for(edge *p=adj[x];p;p=p->nxt) {
if( p->rev->cap > p->rev->flow ) {
int dis = k + p->rev->cost + (h[x] - h[p->to]);
if( dis < d[p->to] ) que.push(pr(d[p->to] = dis, p->to));
}
}
}
return d[s] != INF;
}
bool vis[MAXV + 5];
int aug(int x, int tot) {
if( x == t ) return tot;
vis[x] = true; int sum = 0;
for(edge *&p=cur[x];p;p=p->nxt) {
int dis = d[p->to] + p->cost + (h[p->to] - h[x]);
if( d[x] == dis && !vis[p->to] && p->cap > p->flow ) {
int del = aug(p->to, min(tot - sum, p->cap - p->flow));
sum += del, p->flow += del, p->rev->flow -= del;
if( sum == tot ) break;
}
}
vis[x] = false; return sum;
}
} int f[55];
int main() {
int n, m; scanf("%d%d", &n, &m);
for(int i=1;i<=m;i++) {
int u, v, w; scanf("%d%d%d", &u, &v, &w);
fgraph::addedge(u, v, 1, w);
}
int cnt = 0;
fgraph::s = 1, fgraph::t = n;
for(cnt = 0;fgraph::relabel();cnt++)
f[cnt + 1] = f[cnt] + fgraph::d[1] + fgraph::h[1], fgraph::aug(1, 1); int q; scanf("%d", &q);
for(int i=1;i<=q;i++) {
int x; scanf("%d", &x); double ans = 1E12;
for(int j=1;j<=cnt;j++)
ans = min(ans, 1.0*(x + f[j])/j); printf("%.9f\n", ans);
}
}

details

有如下形式的线性规划式,一般都可以对偶成费用流(据说叫作 LP 对偶费用流),如loj6511「雅礼集训 2018 Day8」B

\[\min\{\sum_{(u,v)\in E}c_{u,v}\times x_{u,v}\} \\
\begin{cases}
\phi_u - \phi_v+x_{u, v}\geq w_{u,v} \\
\phi_i\geq 0, x_{u,v} \geq 0
\end{cases}
\]

【codeforces - 1307G】Cow and Exercise的更多相关文章

  1. 【codeforces 415D】Mashmokh and ACM(普通dp)

    [codeforces 415D]Mashmokh and ACM 题意:美丽数列定义:对于数列中的每一个i都满足:arr[i+1]%arr[i]==0 输入n,k(1<=n,k<=200 ...

  2. 【33.10%】【codeforces 604C】Alternative Thinking

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  3. 【codeforces 707E】Garlands

    [题目链接]:http://codeforces.com/contest/707/problem/E [题意] 给你一个n*m的方阵; 里面有k个联通块; 这k个联通块,每个连通块里面都是灯; 给你q ...

  4. 【codeforces 707C】Pythagorean Triples

    [题目链接]:http://codeforces.com/contest/707/problem/C [题意] 给你一个数字n; 问你这个数字是不是某个三角形的一条边; 如果是让你输出另外两条边的大小 ...

  5. 【codeforces 709D】Recover the String

    [题目链接]:http://codeforces.com/problemset/problem/709/D [题意] 给你一个序列; 给出01子列和10子列和00子列以及11子列的个数; 然后让你输出 ...

  6. 【codeforces 709B】Checkpoints

    [题目链接]:http://codeforces.com/contest/709/problem/B [题意] 让你从起点开始走过n-1个点(至少n-1个) 问你最少走多远; [题解] 肯定不多走啊; ...

  7. 【codeforces 709C】Letters Cyclic Shift

    [题目链接]:http://codeforces.com/contest/709/problem/C [题意] 让你改变一个字符串的子集(连续的一段); ->这一段的每个字符的字母都变成之前的一 ...

  8. 【Codeforces 429D】 Tricky Function

    [题目链接] http://codeforces.com/problemset/problem/429/D [算法] 令Si = A1 + A2 + ... + Ai(A的前缀和) 则g(i,j) = ...

  9. 【Codeforces 670C】 Cinema

    [题目链接] http://codeforces.com/contest/670/problem/C [算法] 离散化 [代码] #include<bits/stdc++.h> using ...

随机推荐

  1. ArcGIS处理栅格数据(三)

    六.制作镶嵌数据集(栅格数据集优点:a.浏览速度快:b.入库速度快:c.可指定区域显示) 1.右键目录中的数据库,新建"镶嵌数据集". 2.添加栅格数据. 3.定义金字塔. 4.构 ...

  2. 1.nginx安装和基本配置

    作者 微信:tangy8080 电子邮箱:914661180@qq.com 更新时间:2019-07-10 20:56:10 星期三 欢迎您订阅和分享我的订阅号,订阅号内会不定期分享一些我自己学习过程 ...

  3. 抓包 127.0.0.1 (loopback) 使用 tcpdump+wireshark

    直接使用 wireshark无法抓取 127.0.0.1环回的数据包,一种解决方法是先传到路由器再返回,但这样可能造成拥塞. Linux 先使用tcpdump抓包并输出为二进制文件,然后wiresha ...

  4. 二、mycat基础知识、基本配置

    官网 http://www.mycat.io/ Mycat 概要介绍 https://github.com/MyCATApache/Mycat-Server 入门指南 https://github.c ...

  5. gradle中的build script详解

    目录 简介 project和task 一个例子 task详细讲解 task脚本 task依赖 动态task 默认task build script的外部依赖 gradle中的build script详 ...

  6. auto switch HTTP protocol Chrome Extension

    auto switch HTTP protocol Chrome Extension HTTPS auto switch to HTTP VPN https://chrome.google.com/w ...

  7. useful tools for programmer programming

    useful tools for programmer programming devtools repl & playground https://repl.it/@xgqfrms/ htt ...

  8. NGK:价值对标比特币,上线暴涨4558%,下一个财富暴增风口

    近期,美股行情多变,一直饱受争议的比特币也成了其中的"弄潮儿".看多者认为,机构的兴趣有助于支撑比特币作为对冲美元疲软和通胀的工具. 特别是今年1月底的时候,马斯克将推特简介更改为 ...

  9. NGK钱包真的安全吗?

    对于数字资产持有者而言,资产的安全永远是首要的,因而数字钱包的安全性显得尤为重要.数字钱包分为冷钱包和热钱包两种.热钱包叫做在线钱包,而冷钱包被称为离线钱包,也叫硬件钱包.数字钱包一旦被盗,被追回的概 ...

  10. 「NGK每日快讯」11.24日NGK公链第22期官方快讯!