POJ_2452 Sticks Problem 【ST表 + 二分】
一、题目
二、分析
对于$i$和$j$,并没有很好的方法能同时将他们两找到最优值,所以考虑固定左端点$i$。
固定左端点后,根据题意,$a[i]$是最小值,那么现在的问题就转化成了求以$a[i]$为左端点最小值的范围内,找到一个最大值$a[j]$的$j$,然后相减就是以$i$为左端点的最优值。
然后枚举$i$,找到最大的$j-i$即可。
如何找$j$,预先用ST表预处理好最大值最小值,然后先找以$i$为最小值的管辖范围(二分找,因为如果当前位置$pos$如果不满足,那么$j$肯定在$pos$的左边,反之可能在右边),再用ST表在这个范围内找到最大的$j$即可。
三、AC代码
1 #include <cstdio>
2 #include <cstring>
3 #include <iostream>
4 #include <algorithm>
5 #include <vector>
6 #include <cmath>
7
8 using namespace std;
9 #define ll long long
10 #define Min(a,b) ((a)>(b)?(b):(a))
11 #define Max(a,b) ((a)>(b)?(a):(b))
12 const int MAXN = 5e4 + 13;
13 int N, a[MAXN], STmax[MAXN][30], STmin[MAXN][30];
14 int Logn[MAXN];
15
16 void pre_log()
17 {
18 Logn[1] = 0, Logn[2] = 1;
19 for(int i = 3; i <= MAXN; i++) {
20 Logn[i] = Logn[i/2] + 1;
21 }
22 }
23
24 void pre_st()
25 {
26 for(int i = 1; i <= N; i++) STmax[i][0] = i, STmin[i][0] = i;
27 int k = Logn[N];
28 for(int j = 1; j <= k; j++) {
29 for(int i = 1; i + (1<<j) - 1 <= N; i++) {
30 if(a[STmin[i][j-1]] < a[STmin[i+(1<<(j-1))][j-1]]) STmin[i][j] = STmin[i][j-1];
31 else STmin[i][j] = STmin[i+(1<<(j-1))][j-1];
32 if(a[STmax[i][j-1]] > a[STmax[i+(1<<(j-1))][j-1]]) STmax[i][j] = STmax[i][j-1];
33 else STmax[i][j] = STmax[i+(1<<(j-1))][j-1];
34 }
35 }
36 }
37
38 int query_min(int l, int r)
39 {
40 // int k = log(1.0*(r - l + 1))/log(2.0);
41 int k = Logn[r - l + 1];
42 if(a[STmin[l][k]] > a[STmin[r-(1<<k)+1][k]]) return STmin[r-(1<<k)+1][k];
43 else return STmin[l][k];
44 }
45
46 int query_max(int l, int r)
47 {
48 int k = log(1.0*(r - l + 1))/log(2.0);
49 if(a[STmax[l][k]] < a[STmax[r-(1<<k)+1][k]]) return STmax[r-(1<<k)+1][k];
50 else return STmax[l][k];
51 }
52
53 int query(int l, int r)
54 {
55 int p = l;
56 while(l < r) {
57 int mid = (l+r+1)>>1;
58 if(query_min(p, mid) == p) l = mid;
59 else r = mid-1;
60 }
61 return l;
62 }
63
64 int main()
65 {
66 pre_log();
67 while(scanf("%d", &N) != EOF) {
68 for(int i = 1; i <= N; i++) {
69 scanf("%d", &a[i]);
70 }
71 pre_st();
72 int ans = -1;
73 for(int i = 1; i < N; i++) {
74 //先以i为最小值进行查找最大的管辖范围
75 //再求范围内的最大j
76 int j = query_max(i, query(i, N));
77 if(j - i == 0)
78 continue;
79 else
80 ans = Max(ans, j - i);
81 }
82 printf("%d\n", ans);
83 }
84 return 0;
85 }
POJ_2452 Sticks Problem 【ST表 + 二分】的更多相关文章
- 「ZJOI2018」胖(ST表+二分)
「ZJOI2018」胖(ST表+二分) 不开 \(O_2\) 又没卡过去是种怎么体验... 这可能是 \(ZJOI2018\) 最简单的一题了...我都能 \(A\)... 首先我们发现这个奇怪的图每 ...
- GCD(st表+二分)
GCD Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submis ...
- 2019CCPC网络赛 C - K-th occurrence HDU - 6704(后缀数组+ST表+二分+主席树)
题意 求区间l,r的子串在原串中第k次出现的位置. 链接:https://vjudge.net/contest/322094#problem/C 思路 比赛的时候用后缀自动机写的,TLE到比赛结束. ...
- 【BZOJ-4310】跳蚤 后缀数组 + ST表 + 二分
4310: 跳蚤 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 180 Solved: 83[Submit][Status][Discuss] De ...
- BZOJ4556 [Tjoi2016&Heoi2016]字符串 SA ST表 二分答案 主席树
原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ4556.html 题目传送门 - BZOJ4556 题意 给定一个长度为 $n$ 的字符串 $s$ . ...
- hdu5289 ST表+二分
用裸的St表+暴力枚举查询时稳TLE的,可以枚举每个区间的起点+二分满足条件的区间右端,这样复杂度是O(nlogn) #include<iostream> #include<cstr ...
- luoguP5108 仰望半月的夜空 [官方?]题解 后缀数组 / 后缀树 / 后缀自动机 + 线段树 / st表 + 二分
仰望半月的夜空 题解 可以的话,支持一下原作吧... 这道题数据很弱..... 因此各种乱搞估计都是能过的.... 算法一 暴力长度然后判断判断,复杂度\(O(n^3)\) 期望得分15分 算法二 通 ...
- 2016多校联合训练1 D题GCD (ST表+二分)
暑假颓废了好久啊...重新开始写博客 题目大意:给定10w个数,10w个询问.每次询问一个区间[l,r],求出gcd(a[l],a[l+1],...,a[r])以及有多少个区间[l',r']满足gcd ...
- 洛谷P4501/loj#2529 [ZJOI2018]胖(ST表+二分)
题面 传送门(loj) 传送门(洛谷) 题解 我们对于每一个与宫殿相连的点,分别计算它会作为多少个点的最短路的起点 若该点为\(u\),对于某个点\(p\)来说,如果\(d=|p-u|\),且在\([ ...
随机推荐
- 超详细 DNS 协议解析
尽人事,听天命.博主东南大学研究生在读,热爱健身和篮球,正在为两年后的秋招准备中,乐于分享技术相关的所见所得,关注公众号 @ 飞天小牛肉,第一时间获取文章更新,成长的路上我们一起进步 本文已收录于 C ...
- 网络安全-企业环境渗透2-wordpress任意文件读&&FFmpeg任意文件读
参考 http://prontosil.club/posts/c08799e1/ 一. 实验名称 企业环境渗透2 二. 实验目的 [实验描述] 操作机的操作系统是kali 进入系统后默认是命令行界面 ...
- C++中关于输入cin的一些总结
(1)cin 在理解cin功能时,不得不提标准输入缓冲区.当我们从键盘输入字符串的时候需要敲一下回车键才能够将这个字符串送入到缓冲区中,那么敲入的这个回车键(\r)会被转换为一个换行符\n,这个换行符 ...
- C# Arrays
Arrays 数组是一系列items 的集合,可以进行各种操作,比如sorting等 定义方式: 数据类型[] 数组名; 使用之前需要实例化,这就是实例化了一个含有2个元素的string 数组 还记得 ...
- Vue computed props pass params
Vue computed props pass params vue 计算属性传参数 // 计算 spreaderAlias spreaderAlias () { console.log('this. ...
- Apple iPhone 12 Pro 数据迁移方式 All In One
Apple iPhone 12 Pro 数据迁移方式 All In One iPhone 12 Pro https://mp.weixin.qq.com/s/US1Z_69zVQIhV-cNW1E6A ...
- The Weekly Web Dev Challenge: Emoji Ratings
The Weekly Web Dev Challenge: Emoji Ratings /* DESCRIPTION: You job is to enable users to give a rat ...
- website SEO all in one
website SEO all in one SEO 指标量化 https://www.similarweb.com/zh/top-websites/ demo https://www.similar ...
- true && number !== boolean
true && number !== boolean bug let result = ``; // section, name ? create text, compute cent ...
- Codeforces Round #703 (Div. 2) (A~E)
A. Shifting Stacks 题目链接 点我跳转 题目大意 给定 \(N\) 个土堆,第 \(i\) 个土堆有 \(Ai\) 个木块 你可以将第 \(i\) 个土堆的木块转移至第 \(i + ...