【Notes_2】现代图形学入门——向量与线性代数
向量与线性代数
点乘和叉乘
Dot Multiplication
点乘在图形学的应用
(1) 求两个向量之间的夹角:
$$\cos(\theta) = \frac{(\vec{a} \cdot \vec{b})}{\lVert a \lVert \lVert b \lVert}$$
可以判断两个向量的距离、分向量与判断向量前后

(2) 投影
一个向量在另一个向量上的投影

Cross Product
[1] 右手坐标系

右手坐标系
叉乘在图形学中的应用
(1) 判断一个向量在另一个向量的左右,叉乘为正(与右手方向一致),则为目标在自己右方,反之亦然;
(2) 在性质(1)的基础上,如果一个点在包围他的所有线的同一侧,那么可以说明该点在这个图形内,反之亦然。

矩阵
矩阵转置与逆
(1) 矩阵A、B乘积的转置等于B的转置矩阵乘A的转置矩阵
\]
(2) 矩阵AB的逆等于B的逆乘A的逆
\]
【Notes_2】现代图形学入门——向量与线性代数的更多相关文章
- 【Notes】现代图形学入门_02
跟着闫令琪老师的课程学习,总结自己学习到的知识点 课程网址GAMES101 B站课程地址GAMES101 课程资料百度网盘[提取码:0000] 光栅化 着色(Shading) 在图形学中,着色的定义可 ...
- 【Notes】现代图形学入门_01
跟着闫令琪老师的课程学习,总结自己学习到的知识点 课程网址GAMES101 B站课程地址GAMES101 课程资料百度网盘[提取码:0000] 计算机图形学概述 计算机图形学是一门将模型转化到屏幕上图 ...
- 图形学入门(3)——区域填充算法(region filling)
继续图形学之旅,我们已经解决了如何画线和画圆的问题,接下来要解决的是,如何往一个区域内填充颜色?对一个像素填充颜色只需调用SetPixel之类的函数就行了,所以这个问题其实就是:如何找到一个区域内的所 ...
- 图形学入门(1)——直线生成算法(DDA和Bresenham)
开一个新坑,记录从零开始学习图形学的过程,现在还是个正在学习的萌新,写的不好请见谅. 首先从最基础的直线生成算法开始,当我们要在屏幕上画一条直线时,由于屏幕由一个个像素组成,所以实际上计算机显示的直线 ...
- 64 计算机图形学入门(1)——OpenGL环境配置与图形流水线(图像管线)
0 引言 最近想学一下计算机图形学方面的知识,原因如下.目前本人接触了数字图像处理(opencv)以及点云处理(PCL)方面的知识,对从图像和点云中提取特征信息,并将特征转化为底层/中层语义信息有了一 ...
- 【Notes_4】现代图形学入门——光栅化、离散化三角形、深度测试与抗锯齿
光栅化 Viewport Transform(视口变换) 将经过MVP变换后得到的单位空间模型变换到屏幕上,屏幕左边是左下角为原点. 所以视口变换的矩阵 \[M_{viewport}=\begin{p ...
- 【Notes_1】现代图形学入门——计算机图形学概述
跟着闫令琪老师的课程学习,总结自己学习到的知识点 课程网址GAMES101 B站课程地址GAMES101 课程资料百度网盘[提取码:0000] 计算机图形学概述 计算机图形学是一门将模型转化到屏幕上图 ...
- 【Notes_8】现代图形学入门——几何(基本表示方法、曲线与曲面)
几何 几何表示 隐式表示 不给出点的坐标,给数学表达式 优点 可以很容易找到点与几何之间的关系 缺点 找某特定的点很难 更多的隐式表示方法 Constructive Solid Geometry .D ...
- 《Shader入门精要》中MVP变换的Projection矩阵与《GAMES101图形学入门》中的区别
game101的透视投影的投影矩阵是这样的 正交投影是这样的 而shader入门精要的透视投影矩阵是这样子 正交投影矩阵是这样子 game101的透视投影是这样得到的 而正交投影的时候并没有假设中心点 ...
随机推荐
- Tomcat简介、安装部署、上线网站
资源池 本章资源:点击这里 提取码:upbf tomcat官网:https://tomcat.apache.org/ jpress博客系统安装包下载地址(不是官网):https://gitee.com ...
- 6.DHCP配置故障转移(Windows2012)
准备: 子网对应核心交换机网关配置多个中继 interface Vlan64 ip address 10.10.64.1 255.255.248.0 ip helper-address 10.10.1 ...
- 基于Qt的tcp客户端和服务器实现摄像头帧数据处理(客户端部分)
项目简述 实现客户端调用摄像头,并以帧的形式将每一帧传输到服务端,服务端将图片进行某些处理后再返回给客户端.(客户端与服务端通信代码部分参考<Qt5 开发及实例>) 项目步骤 客户端的编写 ...
- Codeforces Round #681 (Div. 2, based on VK Cup 2019-2020 - Final) B. Saving the City (贪心,模拟)
题意:给你一个\(01\)串,需要将所有的\(1\)给炸掉,每次炸都可以将一整个\(1\)的联通块炸掉,每炸一次消耗\(a\),可以将\(0\)转化为\(1\),消耗\(b\),问将所有\(1\)都炸 ...
- 51Nod - 1632
B国拥有n个城市,其交通系统呈树状结构,即任意两个城市存在且仅存在一条交通线将其连接.A国是B国的敌国企图秘密发射导弹打击B国的交通线,现假设每条交通线都有50%的概率被炸毁,B国希望知道在被炸毁之后 ...
- Codeforces Round #565 (Div. 3) C. Lose it! (思维)
题意:给你一串只含\(4,8,15,16,23,42\)的序列,如果它满足长度是\(6\)的倍数并且有\(\frac {k}{6}\)个子序列是\([4,8,15,16,23,42]\),则定义它是好 ...
- 二、Python基础(input、变量名、条件语句、循环语句、注释)
一.input用法 input在Python中的含义为永远等待,直到用户输入了值,从而将所输入的值赋值另外的一个东西. n=input('请输入......') 接下来用一个例子学习input的用法 ...
- 前端模块化之ES Module
一.概述 之前提到的几种模块化规范:CommonJS.AMD.CMD都是社区提出的.ES 2015在语言层面上实现了模块功能,且实现简单,可以替代CommonJS和AMD规范,成为在服务器和浏览器通用 ...
- 【转】Docker 核心技术与实现原理
转自:https://draveness.me/docker 提到虚拟化技术,我们首先想到的一定是 Docker,经过四年的快速发展 Docker 已经成为了很多公司的标配,也不再是一个只能在开发阶段 ...
- Nginx基础 - 常用模块配置
1.Nginx状态监控http_stub_status_module记录Nginx客户端基本访问状态信息 location /mystatus { stub_status on; access_log ...