特征预处理之归一化&标准化
写在前面
这篇博客的主要内容
- 应用MinMaxScaler实现对特征数据进行归一化
- 应用StandardScaler实现对特征数据进行标准化
特征预处理
定义
通过一些转换函数将特征数据转换成更加适合算法模型的特征数据过程
特征预处理API
sklearn.preprocessing
为什么要进行归一化/标准化?
特征的单位或者大小相差较大,或者某特征的方差相比其他的特征要大出几个数量级,容易影响(支配)目标结果,使得一些算法无法学习到其它的特征
归一化
定义
通过对原始数据进行变换把数据映射到(默认为[0,1])之间
作用于每一列,max为一列的最大值,min为一列的最小值,那么X’’为最终结果,mx,mi分别为指定区间值默认mx为1,mi为0
API
- sklearn.preprocessing.MinMaxScaler (feature_range=(0,1)… )
- MinMaxScalar.fit_transform(X)
- X:numpy array格式的数据[n_samples,n_features]
- 返回值:转换后的形状相同的array
- MinMaxScalar.fit_transform(X)
数据
milage,Liters,Consumtime,target
40920,8.326976,0.953952,3
14488,7.153469,1.673904,2
26052,1.441871,0.805124,1
75136,13.147394,0.428964,1
38344,1.669788,0.134296,1
代码
from sklearn.preprocessing import MinMaxScaler
def minmax_demo():
data = pd.read_csv("dating.txt")
print(data)
# 1、实例化一个转换器类
transfer = MinMaxScaler(feature_range=(2, 3))
# 2、调用fit_transform
data = transfer.fit_transform(data[['milage','Liters','Consumtime']])
print("最小值最大值归一化处理的结果:\n", data)
return None
结果
标准化
定义
通过对原始数据进行变换把数据变换到均值为0,标准差为1范围内
作用于每一列,mean为平均值,σ为标准差
API
- sklearn.preprocessing.StandardScaler( )
- 处理之后每列来说所有数据都聚集在均值0附近标准差差为1
- StandardScaler.fit_transform(X)
- X:numpy array格式的数据[n_samples,n_features]
- 返回值:转换后的形状相同的array
数据
同上归一化介绍中使用的数据
代码
from sklearn.preprocessing import StandardScaler
def stand_demo():
data = pd.read_csv("dating.txt")
print(data)
transfer = StandardScaler()
data = transfer.fit_transform(data[['milage','Liters','Consumtime']])
print("标准化的结果:\n",data)
print("每一列特征的平均值:\n",transfer.mean_)
print("每一列特征的方差:\n",transfer.var_)
return None
运行结果
特征预处理之归一化&标准化的更多相关文章
- AI学习---特征工程【特征抽取、特征预处理、特征降维】
学习框架 特征工程(Feature Engineering) 数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已 什么是特征工程: 帮助我们使得算法性能更好发挥性能而已 sklearn主 ...
- 什么是机器学习的特征工程?【数据集特征抽取(字典,文本TF-Idf)、特征预处理(标准化,归一化)、特征降维(低方差,相关系数,PCA)】
2.特征工程 2.1 数据集 2.1.1 可用数据集 Kaggle网址:https://www.kaggle.com/datasets UCI数据集网址: http://archive.ics.uci ...
- 数据的特征预处理?(归一化)&(标准化)&(缺失值)
特征处理是什么: 通过特定的统计方法(数学方法)将数据转化成为算法要求的数据 sklearn特征处理API: sklearn.preprocessing 代码示例: 文末! 归一化: 公式: ...
- 关于使用sklearn进行数据预处理 —— 归一化/标准化/正则化
一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/std 计算时对每个属性/每列分别进行. 将数据按期属性(按列进行)减去其均值,并处以其方差.得到的结果是,对于每个属 ...
- 【原】关于使用sklearn进行数据预处理 —— 归一化/标准化/正则化
一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/std 计算时对每个属性/每列分别进行. 将数据按期属性(按列进行)减去其均值,并处以其方差.得到的结果是,对于每个属 ...
- 使用sklearn进行数据预处理 —— 归一化/标准化/正则化
一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/std 计算时对每个属性/每列分别进行. 将数据按期属性(按列进行)减去其均值,并除以其方差.得到的结果是,对于每个属 ...
- [Scikit-Learn] - 数据预处理 - 归一化/标准化/正则化
reference: http://www.cnblogs.com/chaosimple/p/4153167.html 一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/ ...
- 数据预处理中归一化(Normalization)与损失函数中正则化(Regularization)解惑
背景:数据挖掘/机器学习中的术语较多,而且我的知识有限.之前一直疑惑正则这个概念.所以写了篇博文梳理下 摘要: 1.正则化(Regularization) 1.1 正则化的目的 1.2 正则化的L1范 ...
- python就业班-淘宝-目录.txt
卷 TOSHIBA EXT 的文件夹 PATH 列表卷序列号为 AE86-8E8DF:.│ python就业班-淘宝-目录.txt│ ├─01 网络编程│ ├─01-基本概念│ │ 01-网络通信概述 ...
随机推荐
- js上 十六、数组-2
十六.数组-2 #4.3万能法:splice(): #4.3.1.删除功能 语法:arr.splice(index,num); //num表示删除的长度 功能:从下标index位置开始,删除n ...
- 移动 drag&drop拖放
拖放事件 #1. 三个对象 源对象 -- 被拖放的元素 过程对象 -- 经过的元素 目标对象 -- 到达的元素 #2. 源对象中的事件 要想让某个元素可以拖拽需要设置draggable=" ...
- [日常摸鱼]bzoj3122 [Sdoi]2013 随机数生成器
又是写了一晚上才过的题- 题意:有一个数列$x_n=(ax_{n-1}+b) mod p$,给你$x_1,a,b,p,t$,求最小的$x_i=t$的$i$,可能不存在 一开始很自然的推出了式子$x_n ...
- DP-DAY3游记
问题 A: 2017夏令营第一阶段(Day3)问题A拆分数字I 题目描述 把数字N拆分一些正整数的和,问有多少种不同的方法? 例如:N=4,有1+1+1+1.1+1+2.1+2+1.1+3.2+ ...
- 【剑指offer】04 重建二叉树
题目地址:重建二叉树 题目描述 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不 ...
- Python利用pandas处理数据后画图
pandas要处理的数据是一个数据表格.代码: 1 import pandas as pd 2 import numpy as np 3 import matplotlib.pyplot as plt ...
- MVC中Bundle的使用
BundleConfig配置 (1)StyleBundle中的参数,即为cshtml中需要调用的虚拟路径名称. (2)Include包含路径,可以包含一个或多个css或js文件.即包含一组文件. pu ...
- 将.Net Core发布至Docker,并连接 Redis、上传文件到本机、连接sqlserver数据库
此片文章目标是将 .Net Core 发布到 Docker 上,并且连接到在 Docker上的 Redis .上传文件到本机文件夹和连接 sqlserver 数据库. 创建项目 创建项目就不用说了,我 ...
- [LeetCode]92. Reverse Linked List II反转部分链表
/* 重点还是反转链表 思路就是中间的反转,然后两头接上 */ public ListNode reverseBetween(ListNode head, int m, int n) { if (he ...
- [leetcode712] Minimum ASCII Delete Sum for Two Strings
public int minimumDeleteSum(String s1, String s2) { /* 标准的动态规划题目,难点在于想出将两个字符串删除到相同的过程 这里从两个字符串的开头字符考 ...