题目描述

FarmerJohn打算将电话线引到自己的农场,但电信公司并不打算为他提供免费服务。于是,FJ必须为此向电信公司支付一定的费用。FJ的农场周围分布着N(1<=N<=1,000)根按1..N顺次编号的废弃的电话线杆,任意两根电话线杆间都没有电话线相连。一共P(1<=P<=10,000)对电话线杆间可以拉电话线,其余的那些由于隔得太远而无法被连接。第i对电话线杆的两个端点分别为A_i、B_i,它们间的距离为L_i(1<=L_i<=1,000,000)。数据中保证每对{A_i,B_i}最多只出现1次。编号为1的电话线杆已经接入了全国的电话网络,整个农场的电话线全都连到了编号为N的电话线杆上。也就是说,FJ的任务仅仅是找一条将1号和N号电话线杆连起来的路径,其余的电话线杆并不一定要连入电话网络。经过谈判,电信公司最终同意免费为FJ连结K(0<=K<N)对由FJ指定的电话线杆。对于此外的那些电话线,FJ需要为它们付的费用,等于其中最长的电话线的长度(每根电话线仅连结一对电话线杆)。如果需要连结的电话线杆不超过K对,那么FJ的总支出为0。请你计算一下,FJ最少需要在电话线上花多少钱。

输入格式

第1行: 3个用空格隔开的整数:N,P,以及K

第2..P+1行: 第i+1行为3个用空格隔开的整数:A_i,B_i,L_i

输出格式

第1行: 输出1个整数,为FJ在这项工程上的最小支出。

如果任务不可能完成, 输出-1


容易想到的策略是:把1~n路径上花费最高的k条路径去掉。所以我们可以枚举每条路径并枚举路径上的每条边来解答。但这显然不是我们能够接受的复杂度。

我们需要换一种思路来做。我们来分析一下答案的性质:

设答案为ans,那么在1~n的所有路径中lenth<=ans的都可以免费,其余的计入k条免费线路中。如果ans过小,那么lenth>ans的路径数可能大于k,如果过大则得不到最优解。所以我们可以二分答案,对于每个二分出的limitation,把边长大于它的路线的代价改成1,其余的代价为0。然后跑一遍最短路,看最短路长度是否≤k即可。

最短路可以用Dijkstra+Heap做到O((N+M) * logN),二分答案的复杂度为O(logAns),所以总复杂度为:

\[O((N+M)logNlogAns)
\]

可以通过本题。

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#define maxn 1001
#define maxm 10001
using namespace std; struct edge{
int to,next,dis;
edge(){}
edge(const int &_to,const int &_dis,const int _next){
to=_to,dis=_dis,next=_next;
}
}e[maxm<<1];
int head[maxn],k; int dis[maxn],maxlen,ans;
bool vis[maxn];
int n,m,t;
priority_queue< pair<int,int>,vector< pair<int,int> >,greater< pair<int,int> > > q; inline int read(){
register int x(0),f(1); register char c(getchar());
while(c<'0'||'9'<c){ if(c=='-') f=-1; c=getchar(); }
while('0'<=c&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
inline void add(const int &u,const int &v,const int &w){
e[k]=edge(v,w,head[u]);
head[u]=k++;
} inline void dijkstra(const int &lim){
memset(dis,0x3f,sizeof dis);
memset(vis,false,sizeof vis);
q.push(make_pair(0,1));
dis[1]=0;
while(q.size()){
int u=q.top().second; q.pop();
if(vis[u]) continue; vis[u]=true;
for(register int i=head[u];~i;i=e[i].next){
int v=e[i].to;
if(dis[v]>dis[u]+(e[i].dis>lim))
dis[v]=dis[u]+(e[i].dis>lim),q.push(make_pair(dis[v],v));
}
}
} int main(){
memset(head,-1,sizeof head);
n=read(),m=read(),t=read();
for(register int i=1;i<=m;i++){
int u=read(),v=read(),w=read();
add(u,v,w),add(v,u,w);
if(maxlen<w) maxlen=w;
} int l=0,r=maxlen,flag=false;
while(l<=r){
int lim=l+r>>1;
dijkstra(lim);
if(dis[n]<=t) flag=true,ans=lim,r=lim-1;
else l=lim+1;
}
printf("%d\n",flag?ans:-1);
return 0;
}

[Usaco2007 Jan]Telephone Lines架设电话线的更多相关文章

  1. BZOJ1614: [Usaco2007 Jan]Telephone Lines架设电话线

    1614: [Usaco2007 Jan]Telephone Lines架设电话线 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 892  Solved: ...

  2. BZOJ 1614: [Usaco2007 Jan]Telephone Lines架设电话线

    题目 1614: [Usaco2007 Jan]Telephone Lines架设电话线 Time Limit: 5 Sec  Memory Limit: 64 MB Description Farm ...

  3. [Usaco2007 Jan]Telephone Lines架设电话线(最短路,二分)

    [Usaco2007 Jan]Telephone Lines架设电话线 Description FarmerJohn打算将电话线引到自己的农场,但电信公司并不打算为他提供免费服务.于是,FJ必须为此向 ...

  4. [Usaco2007 Jan]Telephone Lines架设电话线[二分答案+最短路思想]

    Description Farmer John打算将电话线引到自己的农场,但电信公司并不打算为他提供免费服务.于是,FJ必须为此向电信公司支付一定的费用. FJ的农场周围分布着N(1 <= N ...

  5. 【bzoj1614】[Usaco2007 Jan]Telephone Lines架设电话线 二分+SPFA

    题目描述 Farmer John打算将电话线引到自己的农场,但电信公司并不打算为他提供免费服务.于是,FJ必须为此向电信公司支付一定的费用. FJ的农场周围分布着N(1 <= N <= 1 ...

  6. 【bzoj1614】[Usaco2007 Jan]Telephone Lines架设电话线

    题目描述 Farmer John打算将电话线引到自己的农场,但电信公司并不打算为他提供免费服务.于是,FJ必须为此向电信公司支付一定的费用.     FJ的农场周围分布着N(1 <= N < ...

  7. BZOJ——1614: [Usaco2007 Jan]Telephone Lines架设电话线

    Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1930  Solved: 823[Submit][Status][Discuss] Description ...

  8. 【二分答案】【最短路】bzoj1614 [Usaco2007 Jan]Telephone Lines架设电话线

    对于二分出的答案x而言,验证答案等价于将所有边权>x的边赋成1,否则赋成0,然后判断从1到n的最短路是否<=K. #include<cstdio> #include<cs ...

  9. BZOJ 1614 [Usaco2007 Jan]Telephone Lines架设电话线:spfa + 二分【路径中最大边长最小】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1614 题意: 给你一个无向图,n个点,m条边. 你需要找出一条从1到n的路径,使得这条路径 ...

随机推荐

  1. 面试 23-面试技巧 by smyhvae

    23-面试技巧 by smyhvae #写简历的注意事项 最多可以写"深入了解",但不要写"精通". #遇到不知道的问题,该怎么回答 这块儿我没了解过,准备回去 ...

  2. antdv的Upload组件实现前端压缩图片并自定义上传功能

    Ant Design of Vue的Upload组件有几个重要的api属性: beforeUpload: 上传文件之前的钩子函数,支持返回一个Promise对象. customRequest: 覆盖组 ...

  3. Web服务器-正则表达式-小例子(3.1.2)

    @ 目录 1.邮箱 2.手机号码 关于作者 1.邮箱 import re def main(): email = input("请输入一个邮件地址:") ret = re.matc ...

  4. 多任务-python实现-进程,协程,线程总结(2.1.16)

    @ 目录 1.类比 2.总结 关于作者 1.类比 一个生产玩具的工厂: 一个生产线成为一个进程,一个生产线有多个工人,所以工人为线程 单进程-多线程:一条生产线,多个工人 多进程-多线程:多条生产线, ...

  5. python2与python3共存后,如何使用

    借用py的一个参数 py -2 与py -3调用不同是的python版本 所以运行的时候只要 py -2 文件名可以用python2来运行脚本 py -3 文件名就是用python3 来运行脚本 参考 ...

  6. .Net Core使用IdentityServer4

    官方文档https://identityserver4.readthedocs.io/en/latest/ 参考https://www.cnblogs.com/i3yuan/p/13843082.ht ...

  7. CSS的各种重要属性

    CSS属性图 01文字属性 <!DOCTYPE html> <html lang="en"> <head> <meta charset=& ...

  8. sql模糊查询和根据日期筛选

    <!-- 查询统计列表 -->   >= 小于等于      <=大于等于 将字符类型转换成日期格式进行比较 select * from xy_platformMessage ...

  9. Log4j日志的级别

    log4j规定了默认的几个级别:ALL < trace < debug < info < warn < error < fatal  < OFF 1)级别之间 ...

  10. intellij IDEA Mybatis入门案例

    最近打算学习ssm框架  Mybatis 作为入门的第一个持久层框架,学习起来实在费劲.故写此文章作为入门案例. 先打开 IDEA建立一个Maven项目,目录结构如下: 源代码已经上传至GitHub ...