一、 内部收益率和净现值

内部收益率(Internal Rate of Return, IRR)其实要和净现值(Net Present Value, NPV)结合起来讲。净现值指的是某个投资项目给公司或企业带来的价值增值,可以简单地用以下公式去计算。

1.净现值:

NPV = CF0 + CF1/(1+r1) + ... + CFt/(1+rt)^t

其中,CF0是初始投资额,是一个负值,代表现金的流出;t表示时间,指第t期;后面的CF1,CF2,...,CFt这些是每期的回报金额,为正值,表示投资所得的收益。r1,r2,...、rt是指每期的折现率。

举个比较通俗的例子,我们花100万元投资了一个一年期理财产品,预期收益率为10%,一年期国债利率为5%,投资是否合算?

这里涉及到折现率的相关知识,简单介绍一下:我们都知道银行存款是有利率的,我们把10000块钱存到银行,一年后,连本带息就会超过10000元。如果我们不把钱存银行,一年后还是10000元钱,不存钱相当于亏掉了那么多利息的钱。也就是说,在存入银行后,一年后的10000元的拿到现在来看,实际是不到10000元的,我可能存9500,一年后就能拿到10000。这就是一个折现的概念,用时间来换利息。

我们再看这个问题,

1年后,预期的现金流就是:

100×(1+10%)=110(万元),

然后,我们按照国债的利率5%来对其折现(假设该产品与国债信用风险相当),即:一年后的110万元,如果我们按信用等级较高的国债去投资,现在价值多少?

答案是:110/(1+5%)。

计算净现值:

NPV = -100 + 110/(1+5%)= 4.7619(万元)

净现值是正的,说明这笔投资合算。当然,这里其实只看年利率就可以做出简单的判断,实际情况下,不论是理财产品还是国债利率都是浮动的。

2.内部收益率

前面我们取的折现率是国债的利率,是一个与投资决策之外的值,也可以理解是外部的收益率。这里内部收益率,指的是使净现值等于0时的折现率,就称为内部收益率(IRR)。我们用一个固定的折现率r去计算,令NPV=0,则

0 = CF0 + CF1/(1+r) + ... + CFt/(1+r)^t

那么,此时的r在数值上与IRR相等。因此,我们只要知道每年的现金流量情况,就能计算出该笔投资的IRR,将IRR与r相比,若IRR>r,则该项目值得投资;若IRR<r,则该项目不值得投资,不如去买同期的稳定国债之类的产品。

3.内部收益率的简单计算

如下表所示,第0年也就是现在,产生了-500万的现金流量,即用500万元去做一个投资,1年、2年、3年后的现金流量均为正的100万元、200万元和300万元。假设还是以5%的国债利率去做折现,这笔投资是否值得?

年份 现金流 (万元)
0 -500
1 100
2 200
3 300

计算内部收益率,将其与国债利率比较,

-500 + 100/(1+IRR) + 200/(1+IRR)^2 + 300/(1+IRR)^3 vs 5%

计算得到

IRR约为8% >5%,该笔投资值得。

从另一个角度看,这笔投资3年后累计现金流为+100万元,如果买3年期利率为5%的国债,则累计现金流为

500×(1+5%)^3-500=78.8125(万元) < 100(万元)

二、Numpy计算内部收益率IRR

直接上源码:

def irr(values):
"""
Return the Internal Rate of Return (IRR).
.. deprecated:: 1.18
`irr` is deprecated; for details, see NEP 32 [1]_.
Use the corresponding function in the numpy-financial library,
https://pypi.org/project/numpy-financial.
This is the "average" periodically compounded rate of return
that gives a net present value of 0.0; for a more complete explanation,
see Notes below.
:class:`decimal.Decimal` type is not supported.
Parameters
----------
values : array_like, shape(N,)
Input cash flows per time period. By convention, net "deposits"
are negative and net "withdrawals" are positive. Thus, for
example, at least the first element of `values`, which represents
the initial investment, will typically be negative.
Returns
-------
out : float
Internal Rate of Return for periodic input values.
Notes
-----
The IRR is perhaps best understood through an example (illustrated
using np.irr in the Examples section below). Suppose one invests 100
units and then makes the following withdrawals at regular (fixed)
intervals: 39, 59, 55, 20. Assuming the ending value is 0, one's 100
unit investment yields 173 units; however, due to the combination of
compounding and the periodic withdrawals, the "average" rate of return
is neither simply 0.73/4 nor (1.73)^0.25-1. Rather, it is the solution
(for :math:`r`) of the equation:
.. math:: -100 + \\frac{39}{1+r} + \\frac{59}{(1+r)^2}
+ \\frac{55}{(1+r)^3} + \\frac{20}{(1+r)^4} = 0
In general, for `values` :math:`= [v_0, v_1, ... v_M]`,
irr is the solution of the equation: [2]_
.. math:: \\sum_{t=0}^M{\\frac{v_t}{(1+irr)^{t}}} = 0
References
----------
.. [1] NumPy Enhancement Proposal (NEP) 32,
https://numpy.org/neps/nep-0032-remove-financial-functions.html
.. [2] L. J. Gitman, "Principles of Managerial Finance, Brief," 3rd ed.,
Addison-Wesley, 2003, pg. 348.
Examples
--------
>>> round(np.irr([-100, 39, 59, 55, 20]), 5)
0.28095
>>> round(np.irr([-100, 0, 0, 74]), 5)
-0.0955
>>> round(np.irr([-100, 100, 0, -7]), 5)
-0.0833
>>> round(np.irr([-100, 100, 0, 7]), 5)
0.06206
>>> round(np.irr([-5, 10.5, 1, -8, 1]), 5)
0.0886
"""
# `np.roots` call is why this function does not support Decimal type.
#
# Ultimately Decimal support needs to be added to np.roots, which has
# greater implications on the entire linear algebra module and how it does
# eigenvalue computations.
res = np.roots(values[::-1]) # 求根
mask = (res.imag == 0) & (res.real > 0) # 虚部为0,实部为大于0
if not mask.any(): # 判断是否有满足条件的实根
return np.nan # 不满足,返回Not A Number
res = res[mask].real
# NPV(rate) = 0 can have more than one solution so we return
# only the solution closest to zero.
rate = 1/res - 1
rate = rate.item(np.argmin(np.abs(rate))) #
return rate

我们直接调用numpy.irr()进行计算,参数为一个数组,每年的现金流量。然后用round()函数将其约到小数点后四位。

计算结果为:0.0821。我们发现这里还报了一个DeprecationWarning,在NumPy 1.20版本,irr()函数将被移除,有一个专门计算金融的Python包从Numpy中独立出来了,叫做numpy_financial,大致看了一下,可以计算fv、pmt、nper、impt、ppmt、pv、rate、irr、npv、mirr等,感兴趣的可以点击进去看一看。

>>> import numpy as np
>>> print(round(np.irr([-500, 100, 200, 300]),4)) Warning (from warnings module):
File "C:\Users\Administrator\Desktop\func1.py", line 2
print(round(np.irr([-100, 39, 59, 55, 20]),4))
DeprecationWarning: numpy.irr is deprecated and will be removed from NumPy 1.20. Use numpy_financial.irr instead (https://pypi.org/project/numpy-financial/).
0.0821

利用Numpy求解投资内部收益率IRR的更多相关文章

  1. Python利用最优化算法求解投资内部收益率IRR【一】

    一. 内部收益率和净现值 内部收益率(Internal Rate of Return, IRR)其实要和净现值(Net Present Value, NPV)结合起来讲.净现值指的是某个投资项目给公司 ...

  2. 利用python求解物理学中的双弹簧质能系统详解

    利用python求解物理学中的双弹簧质能系统详解 本文主要给大家介绍了关于利用python求解物理学中双弹簧质能系统的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧. 物理的 ...

  3. 02_利用numpy解决线性回归问题

    02_利用numpy解决线性回归问题 目录 一.引言 二.线性回归简单介绍 2.1 线性回归三要素 2.2 损失函数 2.3 梯度下降 三.解决线性回归问题的五个步骤 四.利用Numpy实战解决线性回 ...

  4. Numpy求解线性方程组

    Numpy求解线性方程组 对于Ax=b,已知A和b,怎么算出x? 1. 引入包 2. 求解 验证

  5. 利用numpy+matplotlib绘图的基本操作教程

    简述 Matplotlib是一个基于python的2D画图库,能够用python脚本方便的画出折线图,直方图,功率谱图,散点图等常用图表,而且语法简单.具体介绍见matplot官网. Numpy(Nu ...

  6. 使用c语言计算分期贷款折算年化收益率(内部收益率IRR*12)

    众所周知,现在银行的分期贷款利率是很有诱惑性人.表面看利率是很低的,例如招行的闪电贷有时给我的利率是4.3% 但是,由于贷款是分期还本的,我手上的本金每月都在减少,到最后一个月时手上只有少量本金,但是 ...

  7. OpenCV与Python之图像的读入与显示以及利用Numpy的图像转换

    1:读入图像,显示图像与保存图像 代码: import cv2 img=cv2.imread('lena.jpg',cv2.IMREAD_COLOR) cv2.namedWindow('lena',c ...

  8. python 利用numpy进行数据分析

    一.numpy.loadtxt读取数据 data=numpy.loadtxt('数据路径.txt',delimiter=',',usecols=(0,1,2,3) , dtype=float)#读取后 ...

  9. 在Python中利用CVXOPT求解二次规划问题

    工作中需要用到cvxopt,cvxopt安装有坑,大家注意下.1.首先一定要卸载numpy,无论是直接安装的,还是anaconda安装的,主要是必须用whl安装numpy才不会有包的冲突2.二次规划包 ...

随机推荐

  1. Docker(七): 安装Loki

    洛基(Loki),是北欧神话中的恶作剧和谎言之神,亦是火神.他是巨人法布提(Farbauti)和女巨人劳菲(Laufey)的儿子,阿萨神族主神奥丁(Odin)的义兄弟,虽然他比奥丁要年轻许多.但他的个 ...

  2. 牛客挑战赛46 C

    题目链接: 排列 考虑\(dp\),我们思考如何设计状态 将第i个数插入i-1个数中,我们考虑会新增多少个超级逆序对 假设将\(i\)插入后\(i\)的位置为\(l\),\(i-1\)的原来的位置为\ ...

  3. Wordpress Polylang 翻译自定义格式

    WordPress 多语言插件 Polylang 主题函数参考 重要:使用一个函数之前,你必须检查函数是否存在,否则,你的网站可能会在 Polylang 更新之前遇到致命错误(因为 WordPress ...

  4. JavaScript实现自定义右键菜单

    JavaScript实现自定义右键菜单,思路如下: 1. 屏蔽默认右键事件: 2. 隐藏自定义的菜单模块(如div.ul等): 3. 右键点击特定或非特定区域,显示菜单模块: 4. 再次点击,隐藏菜单 ...

  5. HTC Vive使用WebVR的方法以及启用后头显无画面的解决方法

    1.下载支持WebVR的浏览器. 笔者使用的是HTC Vive,故下载了Firefox的Nightly版本[下载地址]. 2.Nightly 开启WebVR的步骤[引用自Mozilla VR] 1.从 ...

  6. ucore操作系统学习(七) ucore lab7同步互斥

    1. ucore lab7介绍 ucore在前面的实验中实现了进程/线程机制,并在lab6中实现了抢占式的线程调度机制.基于中断的抢占式线程调度机制使得线程在执行的过程中随时可能被操作系统打断,被阻塞 ...

  7. windows下plsql连接linux下的oracle数据库

    windows下plsql连接linux下的oracle数据库 经过多方查找,终于找到解决办法,特此记录下来,共享之. PL/SQL Develorper:目前未发现可以在Linux系统中安装的版本. ...

  8. Tensorflow2.0-mnist手写数字识别示例

    Tensorflow2.0-mnist手写数字识别示例   读书不觉春已深,一寸光阴一寸金. 简介:通过CNN 卷积神经网络训练后识别出手写图片,测试图片mnist数据集中的0.1.2.4.     ...

  9. 由两个问题引发的对GaussDB(DWS)负载均衡的思考

    摘要:GaussDB(DWS)的负载均衡通过LVS+keepAlived实现.对于这种方式,需要思考的问题是,CN的返回结果是否会经过LVS,然后再返回给前端应用?如果经过LVS,那么,LVS会不会成 ...

  10. 痞子衡嵌入式:Farewell, 我的2020

    -- 题图:苏州大学老校门 2020年的最后一天,痞子衡驱车300多公里从苏州赶回了苏北老家(扬州某边陲小镇),连镇铁路虽然新通车了,解决了苏南苏北多年的铁路不直通问题,但奈何痞子衡老家小镇离最近的火 ...