Educational Codeforces Round 20 

A. Maximal Binary Matrix

直接从上到下从左到右填,注意只剩一个要填的位置的情况

view code
//#pragma GCC optimize("O3")
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
const int MAXN = 111;
bool vis[MAXN][MAXN];
void solve(){
int n, k; cin >> n >> k;
if(n*n<k) cout << -1 << endl;
else{
for(int i = 1; i <= n and k; i++) for(int j = 1; j <= n and k; j++){
if(vis[i][j]) continue;
if(k==1){
if(i!=j) continue;
vis[i][j] = true;
k--; break;
}
vis[i][j] = vis[j][i] = true;
if(i==j) k -= 1;
else k -= 2;
if(!k) break;
}
for(int i = 1; i <= n; i++){
for(int j = 1; j <= n; j++) cout << (vis[i][j] ? 1 : 0) << ' ';
cout << endl;
}
}
}
int main(){
#ifndef ONLINE_JUDGE
freopen("Local.in","r",stdin);
freopen("ans.out","w",stdout);
#endif
solve();
return 0;
}

B. Distances to Zero

把所有\(0\)的位置记下来然后二分找最近位置即可

view code
//#pragma GCC optimize("O3")
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
const int MAXN = 2e5+7;
void solve(){
____();
int n;
cin >> n;
vector<int> vec(n);
for(int &x : vec) cin >> x;
vector<int> zeropos;
for(int i = 0; i < n; i++) if(!vec[i]) zeropos.push_back(i);
for(int i = 0; i < n; i++){
auto p = lower_bound(zeropos.begin(),zeropos.end(),i);
int ret = MAXN;
if(p!=zeropos.end()) ret = *p - i;
if(p!=zeropos.begin()){
p--;
ret = min(ret,i-*p);
}
cout << ret << ' ';
}cout << endl;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("Local.in","r",stdin);
freopen("ans.out","w",stdout);
#endif
solve();
return 0;
}

C. Maximal GCD

考虑枚举\(g=gcd(A)\),由于要递增,所以填的方式为\(g,2g,3g,\cdots kg+l\)

显然要满足\(g\mid \sum A_i\),找最大的满足条件的\(g\)即可

view code
//#pragma GCC optimize("O3")
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
typedef long long int LL; void solve(){
LL n, k;
cin >> n >> k;
if(k>1e7 or (k+1)*k/2>n) cout << -1 << endl;
else{
vector<LL> f;
for(LL i = 1; i * i <= n; i++){
if(n%i) continue;
f.push_back(i);
if(i!=n/i) f.push_back(n/i);
}
sort(f.begin(),f.end());
LL tot = (k + 1) * k / 2;
LL g = 1;
for(auto d : f){
if(tot * d > n) break;
g = max(g,d);
}
vector<LL> ret;
for(int i = 0; i < k; i++){
ret.push_back((i+1)*g);
n -= (i+1)*g;
}
ret.back() += n;
for(auto x : ret) cout << x << ' ';
cout << endl;
}
}
int main(){
#ifndef ONLINE_JUDGE
freopen("Local.in","r",stdin);
freopen("ans.out","w",stdout);
#endif
solve();
return 0;
}

D.Magazine Ad

把所有串按空格和横杠分开,得到一些短的串,每个串的权值为长度,问题转化为把\(n\)个数分成最多\(k\)组,求权值最大的组的最小值,二分即可

view code
//#pragma GCC optimize("O3")
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
const int MAXN = 1e6+7;
int k;
void solve(){
____();
string s;
cin >> k;
cin.get(); getline(cin,s);
s.push_back('-');
// binary search
vector<int> pos;
pos.push_back(-1);
for(int i = 0; i < s.length(); i++) if(s[i]=='-' or s[i]==' ') pos.push_back(i);
vector<int> seg;
for(int i = 1; i < pos.size(); i++) seg.push_back(pos[i] - pos[i-1]);
seg.back()--;
auto check = [&](int m){
int cnt = 0, tot = 0;
for(int i = 0; i < seg.size(); i++){
if(seg[i]>m) return false;
if(tot + seg[i] <= m) tot += seg[i];
else{
cnt++;
tot = seg[i];
}
}
cnt++;
return cnt <= k;
};
int l = 1, r = s.length();
while(l<=r){
int mid = (l + r) >> 1;
if(check(mid)) r = mid - 1;
else l = mid + 1;
}
cout << l << endl;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("Local.in","r",stdin);
freopen("ans.out","w",stdout);
#endif
solve();
return 0;
}

E. Roma and Poker

考虑\(DP\),\(dp[i][j]\)表示到第\(i\)个位置赢和输的差值为\(j\)的情况下的上一个状态

转移的时候注意不能从差值的绝对值为\(k\)的状态转移过来

最后倒推回去输出答案就好了

view code
//#pragma GCC optimize("O3")
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
const int MAXN = 1e3+7;
const int D = 1e3+3;
const int INF = 0x3f3f3f3f;
int f[MAXN][MAXN<<1]; int n, k;
char s[MAXN];
void solve(){
____();
cin >> n >> k >> s + 1;
memset(f,0x3f,sizeof(f));
f[0][D] = -1;
for(int i = 1; i <= n; i++){
if(s[i]=='L' or s[i]=='?'){ // lose
for(int j = D - k + 1; j <= D + k - 1; j++){
if(f[i-1][j]==INF) continue;
f[i][j-1] = j;
}
}
if(s[i]=='W' or s[i]=='?'){ // win
for(int j = D - k + 1; j <= D + k - 1; j++){
if(f[i-1][j]==INF) continue;
f[i][j+1] = j;
}
}
if(s[i]=='D' or s[i]=='?'){
for(int j = D - k + 1; j <= D + k - 1; j++){
if(f[i-1][j]==INF) continue;
f[i][j] = j;
}
}
}
if(f[n][D+k]==INF and f[n][D-k]==INF) cout << "NO" << endl;
else{
int u;
string ret;
if(f[n][D+k]!=INF) u = D + k;
else u = D - k;
for(int i = n; i >= 1; i--){
if(u - f[i][u] == 0) ret.push_back('D');
else if(u - f[i][u] == 1) ret.push_back('W');
else ret.push_back('L');
u = f[i][u];
}
reverse(ret.begin(),ret.end());
cout << ret << endl;
}
}
int main(){
#ifndef ONLINE_JUDGE
freopen("Local.in","r",stdin);
freopen("ans.out","w",stdout);
#endif
solve();
return 0;
}

F. Coprime Subsequences

\(f(n)\)表示组合的\(gcd=n\)的方案数

\(F(n)\)表示组合的\(n\mid gcd\)的方案数

那么\(F(n) = \sum_{n\mid d}f(d)\)

根据莫比乌斯反演,\(f(n) = \sum_{n\mid d}\mu(\frac dn)F(d)\)

我们要求的答案就是\(f(1)\)

容易发现如果有\(x\)个数的因子有\(d\)那么\(F(d) = 2^x-1\)

那么我们就能很容易算出\(f(1)\)了

view code
//#pragma GCC optimize("O3")
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
const int MOD = 1e9+7;
const int MAXN = 1e5+7;
int n, prime[MAXN], pri_cnt, mu[MAXN], cnt[MAXN], pw[MAXN];
bool npm[MAXN]; vector<int> ds[MAXN];
void sieve(){
mu[1] = 1;
for(int i = 2; i < MAXN; i++){
if(!npm[i]) prime[++pri_cnt] = i, mu[i] = -1;
for(int j = 1; i * prime[j] < MAXN; j++){
npm[i*prime[j]] = true;
if(i%prime[j]==0){
mu[i*prime[j]] = 0;
break;
}
mu[i*prime[j]] = -mu[i];
}
}
for(int i = 1; i < MAXN; i++) for(int j = i; j < MAXN; j += i) ds[j].push_back(i);
pw[0] = 1;
for(int i = 1; i < MAXN; i++) pw[i] = pw[i-1] * 2 % MOD;
} void solve(){
____();
sieve();
cin >> n;
for(int i = 1; i <= n; i++){
int x; cin >> x;
for(int d : ds[x]) cnt[d]++;
}
int ret = 0;
for(int i = 1; i < MAXN; i++) ret = (ret + mu[i] * 1ll * (pw[cnt[i]] - 1)) % MOD;
cout << (ret + MOD) % MOD << endl;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("Local.in","r",stdin);
freopen("ans.out","w",stdout);
#endif
solve();
return 0;
}

G. Periodic RMQ Problem

由于范围比较大,考虑离散化坐标,为了能找到最小值,需要在离散化坐标相邻的两点中间额外加入一个区间最小值的点,这个点的值可以用\(ST\)表来找,加的点的值根据两点实际坐标的距离和位置稍微分类一下就好了,然后就很好搞了

view code
//#pragma GCC optimize("O3")
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
const int MAXN = 6e5 + 7;
const int INF = 0x3f3f3f3f;
int n, k, A[MAXN][20];
struct Qs{ int type, l, r, x; }Q[MAXN];
struct SegTree{
#define ls(rt) rt << 1
#define rs(rt) rt << 1 | 1
int minn[MAXN<<2], l[MAXN<<2], r[MAXN<<2], lazy[MAXN<<2];
#define pushup(rt) minn[rt] = min(minn[ls(rt)],minn[rs(rt)])
void build(int L, int R, vector<pair<int,int> > &vcc, int rt = 1){
l[rt] = L, r[rt] = R;
if(L + 1 == R){
minn[rt] = vcc[L].second;
return;
}
int mid = (L + R) >> 1;
build(L,mid,vcc,ls(rt)); build(mid,R,vcc,rs(rt));
pushup(rt);
}
void pushdown(int rt){
if(!lazy[rt]) return;
lazy[ls(rt)] = lazy[rs(rt)] = minn[ls(rt)] = minn[rs(rt)] = lazy[rt];
lazy[rt] = 0;
}
void modify(int L, int R, int x, int rt = 1){
if(L>=r[rt] or l[rt]>=R) return;
if(L<=l[rt] and r[rt]<=R){
lazy[rt] = minn[rt] = x;
return;
}
pushdown(rt);
modify(L,R,x,ls(rt)); modify(L,R,x,rs(rt));
pushup(rt);
}
int query(int L, int R, int rt = 1){
if(L>=r[rt] or l[rt]>=R) return INF;
if(L<=l[rt] and r[rt]<=R) return minn[rt];
pushdown(rt);
return min(query(L,R,ls(rt)),query(L,R,rs(rt)));
}
}ST; void solve(){
____();
cin >> n >> k;
for(int i = 0; i < n; i++) cin >> A[i][0], A[i+n][0] = A[i][0];
for(int j = 1; (1 << j) <= (n << 1); j++) for(int i = 0; i + (1 << j) - 1 < (n << 1); i++) A[i][j] = min(A[i][j-1],A[i+(1<<(j-1))][j-1]);
auto query = [&](int l, int r){
int d = (int)log2(r - l + 1);
return min(A[l][d],A[r-(1<<d)+1][d]);
};
int q; cin >> q;
vector<int> vec;
for(int i = 0; i < q; i++){
cin >> Q[i].type >> Q[i].l >> Q[i].r;
Q[i].l--; Q[i].r--;
if(Q[i].type==1) cin >> Q[i].x;
vec.push_back(Q[i].l); vec.push_back(Q[i].r);
}
sort(vec.begin(),vec.end());
vec.erase(unique(vec.begin(),vec.end()),vec.end());
vector<pair<int,int> > vcc;
for(int i = 1, lim = vec.size(); i < lim; i++){
if(vec[i]==vec[i-1]+1) continue;
if(vec[i]-vec[i-1]+1>=n) vcc.push_back({vec[i-1]+1,query(0,n-1)});
else{
int l = vec[i-1] % n, r = vec[i] % n;
if(l>r) r += n;
vcc.push_back({vec[i-1]+1,query(l+1,r-1)});
}
}
for(int i = 0; i < (int) vec.size(); i++) vcc.push_back({vec[i],A[vec[i]%n][0]});
sort(vcc.begin(),vcc.end());
ST.build(0,vcc.size(),vcc);
for(int i = 0; i < q; i++){
int l = Q[i].l, r = Q[i].r;
l = lower_bound(vcc.begin(),vcc.end(),make_pair(l,0)) - vcc.begin();
r = lower_bound(vcc.begin(),vcc.end(),make_pair(r,0)) - vcc.begin();
if(Q[i].type==1) ST.modify(l,r+1,Q[i].x);
else printf("%d\n",ST.query(l,r+1));
}
}
int main(){
#ifndef ONLINE_JUDGE
freopen("Local.in","r",stdin);
freopen("ans.out","w",stdout);
#endif
solve();
return 0;
}

Educational Codeforces Round 20的更多相关文章

  1. Educational Codeforces Round 20 D. Magazine Ad

    The main city magazine offers its readers an opportunity to publish their ads. The format of the ad ...

  2. Educational Codeforces Round 20 C(math)

    題目鏈接: http://codeforces.com/problemset/problem/803/C 題意: 給出兩個數n, k, 將n拆分成k個數的和,要求這k個數是嚴格遞增的,並且這k個數的g ...

  3. Educational Codeforces Round 20.C

    C. Maximal GCD time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  4. Educational Codeforces Round 20 C 数学/贪心/构造

    C. Maximal GCD time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  5. Educational Codeforces Round 20 C. Maximal GCD

    C. Maximal GCD time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  6. Educational Codeforces Round 20 B. Distances to Zero

    B. Distances to Zero time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  7. Educational Codeforces Round 20 A. Maximal Binary Matrix

    A. Maximal Binary Matrix time limit per test 1 second memory limit per test 256 megabytes input stan ...

  8. Educational Codeforces Round 20 E - Roma and Poker(dp)

    传送门 题意 Roma在玩一个游戏,一共玩了n局,赢则bourle+1,输则bourle-1,Roma将会在以下情况中退出 1.他赢了k个bourle 2.他输了k个bourle 现在给出一个字符串 ...

  9. Educational Codeforces Round 20 B

    Description You are given the array of integer numbers a0, a1, ..., an - 1. For each element find th ...

随机推荐

  1. web渗透之常见shell反弹姿势

    常见反弹shell总结: 原文链接请点击:https://ruoli-s.github.io/posts/b956.html 一.bash反弹 通用 ① 在kali机里面开启端口监听: nc -lvv ...

  2. 【LeetCode】365.水壶问题

    题目描述 解题思路 思路一:裴蜀定理-数学法 由题意,每次操作只会让桶里的水总量增加x或y,或者减少x或y,即会给水的总量带来x或y的变化量,转为数字描述即为:找到一对整数a,b使得下式成立: ax+ ...

  3. 剑指offer 面试题3:数组中重复的数字

    题目描述 在一个长度为n的数组里的所有数字都在0到n-1的范围内. 数组中某些数字是重复的,但不知道有几个数字是重复的.也不知道每个数字重复几次.请找出数组中任意一个重复的数字. 例如,如果输入长度为 ...

  4. 【Sphinx】 为Python自动生成文档

    sphinx 前言 Sphinx是一个可以用于Python的自动文档生成工具,可以自动的把docstring转换为文档,并支持多种输出格式包括html,latex,pdf等 开始 建一个存放文档的do ...

  5. Java 使用 commons-fileupload 实现文件上传工具类

    依赖包 文件上传可以使用 Apache 文件上传组件, commons-fileupload, 它依赖于 commons-io commons-io.jar: https://repo1.maven. ...

  6. mysql中更改字段属性实际上都做了哪些操作

     mysql> set profiling=1; Query OK, 0 rows affected (0.00 sec) mysql> alter table test modify n ...

  7. layui表格数据统计

    //执行一个 table 实例 table.render({ elem: '#demo' ,height: 420 ,url: '/demo/table/user/' //数据接口 ,title: ' ...

  8. Java中,那些关于String和字符串常量池你不得不知道的东西

    老套的笔试题 在一些老套的笔试题中,会要你判断s1==s2为false还是true,s1.equals(s2)为false还是true. String s1 = new String("xy ...

  9. 二. SpringCloud基本Rest微服务工程搭建

    1. 父工程构建 1.1 Maven项目搭建 环境 版本 JDK 1.8 Maven 3.6+ Maven模板 maven-archetype-size 删除父工程src文件 1.2 父工程pom文件 ...

  10. 从synchronized和lock区别入手聊聊java锁机制

    写这篇文章之前,我去百度了一下啥叫锁,百度百科上写道:置于可启闭的器物上,以钥匙或暗码开启.确实我们一般理解的锁就是门锁,密码锁,但是在计算机科学中,锁又是啥,说实话,这个问题我也思考了很久,也没法很 ...