dict

Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度。

举个例子,假设要根据同学的名字查找对应的成绩,如果用list实现,需要两个list:

names = ['Michael', 'Bob', 'Tracy']
scores = [95, 75, 85]

给定一个名字,要查找对应的成绩,就先要在names中找到对应的位置,再从scores取出对应的成绩,list越长,耗时越长。

如果用dict实现,只需要一个“名字”-“成绩”的对照表,直接根据名字查找成绩,无论这个表有多大,查找速度都不会变慢。用Python写一个dict如下:

>>> d = {'Michael': 95, 'Bob': 75, 'Tracy': 85}
>>> d['Michael']
95

为什么dict查找速度这么快?因为dict的实现原理和查字典是一样的。假设字典包含了1万个汉字,我们要查某一个字,一个办法是把字典从第一页往后翻,直到找到我们想要的字为止,这种方法就是在list中查找元素的方法,list越大,查找越慢。

第二种方法是先在字典的索引表里(比如部首表)查这个字对应的页码,然后直接翻到该页,找到这个字,无论找哪个字,这种查找速度都非常快,不会随着字典大小的增加而变慢。

dict就是第二种实现方式,给定一个名字,比如'Michael',dict在内部就可以直接计算出Michael对应的存放成绩的“页码”,也就是95这个数字存放的内存地址,直接取出来,所以速度非常快。

你可以猜到,这种key-value存储方式,在放进去的时候,必须根据key算出value的存放位置,这样,取的时候才能根据key直接拿到value。

把数据放入dict的方法,除了初始化时指定外,还可以通过key放入:

>>> d['Adam'] = 67
>>> d['Adam']
67

由于一个key只能对应一个value,所以,多次对一个key放入value,后面的值会把前面的值冲掉:

>>> d['Jack'] = 90
>>> d['Jack']
90
>>> d['Jack'] = 88
>>> d['Jack']
88

如果key不存在,dict就会报错:

>>> d['Thomas']
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
KeyError: 'Thomas'

要避免key不存在的错误,有两种办法,一是通过in判断key是否存在:

>>> 'Thomas' in d
False

二是通过dict提供的get方法,如果key不存在,可以返回None,或者自己指定的value:

>>> d.get('Thomas')
>>> d.get('Thomas', -1)
-1

注意:返回None的时候Python的交互式命令行不显示结果。

要删除一个key,用pop(key)方法,对应的value也会从dict中删除:

>>> d.pop('Bob')
75
>>> d
{'Michael': 95, 'Tracy': 85}

请务必注意,dict内部存放的顺序和key放入的顺序是没有关系的。

和list比较,dict有以下几个特点:

  1. 查找和插入的速度极快,不会随着key的增加而增加;
  2. 需要占用大量的内存,内存浪费多。

而list相反:

  1. 查找和插入的时间随着元素的增加而增加;
  2. 占用空间小,浪费内存很少。

所以,dict是用空间来换取时间的一种方法。

dict可以用在需要高速查找的很多地方,在Python代码中几乎无处不在,正确使用dict非常重要,需要牢记的第一条就是dict的key必须是不可变对象

这是因为dict根据key来计算value的存储位置,如果每次计算相同的key得出的结果不同,那dict内部就完全混乱了。这个通过key计算位置的算法称为哈希算法(Hash)。

要保证hash的正确性,作为key的对象就不能变。在Python中,字符串、整数等都是不可变的,因此,可以放心地作为key。而list是可变的,就不能作为key:

>>> key = [1, 2, 3]
>>> d[key] = 'a list'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'

set

set和dict类似,也是一组key的集合,但不存储value。由于key不能重复,所以,在set中,没有重复的key。

要创建一个set,需要提供一个list作为输入集合:

>>> s = set([1, 2, 3])
>>> s
set([1, 2, 3])

注意,传入的参数[1, 2, 3]是一个list,而显示的set([1, 2, 3])只是告诉你这个set内部有1,2,3这3个元素,显示的[]不表示这是一个list。

重复元素在set中自动被过滤:

>>> s = set([1, 1, 2, 2, 3, 3])
>>> s
set([1, 2, 3])

通过add(key)方法可以添加元素到set中,可以重复添加,但不会有效果:

>>> s.add(4)
>>> s
set([1, 2, 3, 4])
>>> s.add(4)
>>> s
set([1, 2, 3, 4])

通过remove(key)方法可以删除元素:

>>> s.remove(4)
>>> s
set([1, 2, 3])

set可以看成数学意义上的无序和无重复元素的集合,因此,两个set可以做数学意义上的交集、并集等操作:

>>> s1 = set([1, 2, 3])
>>> s2 = set([2, 3, 4])
>>> s1 & s2
set([2, 3])
>>> s1 | s2
set([1, 2, 3, 4])

set和dict的唯一区别仅在于没有存储对应的value,但是,set的原理和dict一样,所以,同样不可以放入可变对象,因为无法判断两个可变对象是否相等,也就无法保证set内部“不会有重复元素”。试试把list放入set,看看是否会报错。

再议不可变对象

上面我们讲了,str是不变对象,而list是可变对象。

对于可变对象,比如list,对list进行操作,list内部的内容是会变化的,比如:

>>> a = ['c', 'b', 'a']
>>> a.sort()
>>> a
['a', 'b', 'c']

而对于不可变对象,比如str,对str进行操作呢:

>>> a = 'abc'
>>> a.replace('a', 'A')
'Abc'
>>> a
'abc'

虽然字符串有个replace()方法,也确实变出了'Abc',但变量a最后仍是'abc',应该怎么理解呢?

我们先把代码改成下面这样:

>>> a = 'abc'
>>> b = a.replace('a', 'A')
>>> b
'Abc'
>>> a
'abc'

要始终牢记的是,a是变量,而'abc'才是字符串对象!有些时候,我们经常说,对象a的内容是'abc',但其实是指,a本身是一个变量,它指向的对象的内容才是'abc':

当我们调用a.replace('a', 'A')时,实际上调用方法replace是作用在字符串对象'abc'上的,而这个方法虽然名字叫replace,但却没有改变字符串'abc'的内容。相反,replace方法创建了一个新字符串'Abc'并返回,如果我们用变量b指向该新字符串,就容易理解了,变量a仍指向原有的字符串'abc',但变量b却指向新字符串'Abc'了:

所以,对于不变对象来说,调用对象自身的任意方法,也不会改变该对象自身的内容。相反,这些方法会创建新的对象并返回,这样,就保证了不可变对象本身永远是不可变的。

小结

使用key-value存储结构的dict在Python中非常有用,选择不可变对象作为key很重要,最常用的key是字符串。

tuple虽然是不变对象,但试试把(1, 2, 3)和(1, [2, 3])放入dict或set中,并解释结果。

 

python-字典dict、去除重复set的更多相关文章

  1. python字典dict的增、删、改、查操作

    ## python字典dict的增.删.改.查操作dict = {'age': 18, 'name': 'jin', 'sex': 'male', }#增# dict['heigh'] = 185 # ...

  2. Python 字典 dict() 函数

    描述 Python 字典 dict() 函数用于创建一个新的字典,用法与 Pyhon 字典 update() 方法相似. 语法 dict() 函数函数语法: dict(key/value) 参数说明: ...

  3. 'dict_values' object does not support indexing, Python字典dict中由value查key

    Python字典dict中由value查key 众所周知,字典dict最大的好处就是查找或插入的速度极快,并且不想列表list一样,随着key的增加越来越复杂.但是dict需要占用较大的内存空间,换句 ...

  4. python 字典dict - python基础入门(15)

    前面的课程讲解了字符串str/列表list/元组tuple,还有最后一种比较重要的数据类型也需要介绍介绍,那就是python字典,俗称:dict. python中的字典可与字符串/列表/元组不同,因为 ...

  5. Python字典(dict)使用技巧

    字典dict是Python中使用频率非常高的数据结构,关于它的使用,也有许多的小技巧,掌握这些小技巧会让你高效地的使用dict,也会让你的代码更简洁. 1.默认值 假设name_for_userid存 ...

  6. python 字典 dict 该注意的一些操作

    在用python处理dict 的时候,有几个该注意的地方,这里跟大家提一下: 1)操作dict 时,尽量少产生新的列表对象.比如: 遍历dict的时候,如果用 dic = {"a" ...

  7. Python — 字典dict 和 集合set

    字典dict : dict和set的key都是不可变对象 对于不变对象来说,调用对象自身的任意方法,也不会改变对象自身的内容.相反,这些方法会创建新的对象并返回,这样,就保证了不可变对象本身永远是不可 ...

  8. python 字典(dict)按键和值排序

    python 字典(dict)的特点就是无序的,按照键(key)来提取相应值(value),如果我们需要字典按值排序的话,那可以用下面的方法来进行: 1 下面的是按照value的值从大到小的顺序来排序 ...

  9. python 字典dict和列表list的读取速度问题, range合并

    python 字典和列表的读取速度问题 最近在进行基因组数据处理的时候,需要读取较大数据(2.7G)存入字典中,然后对被处理数据进行字典key值的匹配,在被处理文件中每次读取一行进行处理后查找是否在字 ...

  10. Python 字典dict 集合set

    字典dict Python内置字典,通过key-value进行存储,字典是无序的,拓展hash names = ['Michael', 'Bob', 'Tracy'] scores = [95, 75 ...

随机推荐

  1. acm一些小细节/技巧

    以后没有终止信号的输入统一用 : while(cin>>a) { ... } "1" 不是质数, 要注意.  当需要把一个数组中的数值初始化成正无穷时,为了避免加法算术 ...

  2. bss、弱符号强符号、common块、未初始化的全局变量------程序员的自我修养-链接装载与库

  3. 两种图片下拉放大效果实现(自定义CoordinatorLayout以及自定义Recylerview)

    一.自定义CoordinatorLayout实现图片放大功能 本文是基于折叠布局实现的图片上拉滑动,下拉图片放大,松手放大的效果,先看下效果图. 实现原理: 1.使用CoordinatorLayout ...

  4. MySQL 连接为什么挂死了?

    摘要:本次分享的是一次关于 MySQL 高可用问题的定位过程,其中曲折颇多但问题本身却比较有些代表性,遂将其记录以供参考. 一.背景 近期由测试反馈的问题有点多,其中关于系统可靠性测试提出的问题令人感 ...

  5. invalid PID number "" in "/usr/local/nginx/logs/nginx.pid"

    解决办法: $ sudo nginx -c /usr/local/etc/nginx/nginx.conf $ sudo nginx -s reload

  6. Mac磁盘清理工具——CleanMyMac

    许多刚从Windows系统转向Mac系统怀抱的用户,一开始难免不习惯,因为Mac系统没有像Windows一样的C盘.D盘,分盘分区明显.因此这也带来了一些问题,关于Mac的磁盘的清理问题,怎么进行清理 ...

  7. 如何用Camtasia将喜欢的视频做出复古的感觉

    不知道各位可有看老电影的习惯,我个人觉得一些老电影那种别具一格的画面感是非常吸引人的韵味,尽管其色彩不是很鲜艳,但是这种黑白的感觉,对于现在的我们,往往有着不一样的吸引力.于是,我就尝试着用Camta ...

  8. hashmap(有空可以看看算法这本书中对于这部分的实现,很有道理)

    //转载:https://baijiahao.baidu.com/s?id=1618550070727689060&wfr=spider&for=pc 1.为什么用HashMap? H ...

  9. Redis 基础数据结构之一:string(字符串)

    Redis 有 5 种基础数据结构,分别为:string (字符串).list (列表).set (集合).hash (哈希) 和 zset (有序集合),Redis存储数据的结构是键值对形式的. 首 ...

  10. IDEA集成Docker插件后出现日志乱码的解决办法

    修改IDEA的vmoptions文件 找到IDEA安装目录的bin目录,在idea.exe.vmoptions和idea64.exe.vmoptions文件中追加以下内容: -Dfile.encodi ...