poj2923 Relocation
Description
Emma and Eric are moving to their new house they bought after returning from their honeymoon. Fortunately, they have a few friends helping them relocate. To move the furniture, they only have two compact cars, which complicates everything a bit. Since the
furniture does not fit into the cars, Eric wants to put them on top of the cars. However, both cars only support a certain weight on their roof, so they will have to do several trips to transport everything. The schedule for the move is planed like this:
- At their old place, they will put furniture on both cars.
- Then, they will drive to their new place with the two cars and carry the furniture upstairs.
- Finally, everybody will return to their old place and the process continues until everything is moved to the new place.
Note, that the group is always staying together so that they can have more fun and nobody feels lonely. Since the distance between the houses is quite large, Eric wants to make as few trips as possible.
Given the weights wi of each individual piece of furniture and the capacities C1 and C2 of the two cars, how many trips to the new house does the party have to make to move all the furniture? If
a car has capacity C, the sum of the weights of all the furniture it loads for one trip can be at most C.
Input
The first line contains the number of scenarios. Each scenario consists of one line containing three numbers n, C1 and C2. C1 and C2 are the capacities of the cars (1
≤ Ci ≤ 100) and n is the number of pieces of furniture (1 ≤ n ≤ 10). The following line will contain n integers w1, …, wn, the weights of the furniture (1 ≤ wi ≤
100). It is guaranteed that each piece of furniture can be loaded by at least one of the two cars.
Output
The output for every scenario begins with a line containing “Scenario #i:”, where i is the number of the scenario starting at 1. Then print a single line with the number of trips to the new house they have to make to move
all the furniture. Terminate each scenario with a blank line.
Sample Input
2
6 12 13
3 9 13 3 10 11
7 1 100
1 2 33 50 50 67 98
Sample Output
Scenario #1:
2 Scenario #2:
3
这道题是用状态压缩+01背包,因为物品只有10件,所以会想到状压dp,先把所有的物品都用0和1表示,0表示物品还没有被搬走,1表示已经被搬走,用dp[state]记录从所有物品都未被搬走到状态state所要搬的最少次数。可以先算出哪些状态是一次就能搬走的,这里要用到01背包的思想,先看看该状态下c1可以容纳多少重量,然后用看看把这些重量搬走后剩下的质量能不能被c2所容纳。这些都处理完后,就用状态转移方程dp[j|state]=min(dp[j|state,dp[state]+1},这个方程很巧妙啊,开始还以为是两个能一次搬走的状态结合,其实是利用能一次搬走,所以在之前的基础上加上这个一次能搬走的状态。最后的结果就是dp[1<<(n-1)]啦。
#include<stdio.h>
#include<string.h>
#define inf 88888888
int c1,c2,n,w[15],state,yici[1500],vis[150],dp[1500];
int min(int x,int y){
return x<y?x:y;
}
int panduan(int x)
{
int i,j,sum=0;
memset(vis,0,sizeof(vis));
vis[0]=1;
for(i=1;i<=n;i++){
if((1<<(i-1))&x){
sum+=w[i];
for(j=c1;j>=w[i];j--){
if(vis[j-w[i]]){
vis[j]++;
}
}
}
}
if(sum>c1+c2)return 0;
for(i=0;i<=c1;i++){
if(vis[i] && sum-i<=c2)return 1;
}
return 0;
}
int main()
{
int m,i,j,T,t,num1=0;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&n,&c1,&c2);
for(i=1;i<=n;i++){
scanf("%d",&w[i]);
}
t=0;
memset(yici,0,sizeof(yici));
for(i=1;i<(1<<n);i++){
dp[i]=inf;
if(panduan(i)){
yici[++t]=i;
dp[i]=1;
}
}
dp[0]=0;
for(i=1;i<(1<<n);i++){
for(j=1;j<=t;j++){
if(yici[j]&i)continue;
dp[i|yici[j]]=min(dp[i|yici[j]],dp[i]+1);
}
}
num1++;
printf("Scenario #%d:\n",num1);
printf("%d\n\n",dp[(1<<n)-1]);
}
return 0;
}
poj2923 Relocation的更多相关文章
- Relocation POJ-2923
题目链接 题目意思: 有 n 个货物,并且知道了每个货物的重量,每次用载重量分别为c1,c2的火车装载,问最少需要运送多少次可以将货物运完. 分析:本题可以用二进制枚举所有不冲突的方案,再来dp 一下 ...
- [poj2923]Relocation_状压dp_01背包
Relocation poj-2923 题目大意:给出n个物品,有两辆车,两辆车必须一起出动并且每辆车有单独的容量.问最少需要运输多少次才能运走所有货物. 注释:n<=10,容量,物品代价< ...
- relocation 错误
icc test/train/test_lm2.o -shared -lpthread -ldl ./lib/liblm2.a -o liblm2.so ld: ./lib/liblm2.a(cJSO ...
- ffmpeg relocation error
在向imx6移植ffmpeg后,一般的编解码操作没有问题,但是当从摄像头录视频时, ffmpeg -f video4linux2 -s 640*480 -r 10 -i /dev/video0 tes ...
- rac one node在线relocation
1.查看数据库运行状态 $ srvctl status database -d rone Instance rone_2 is running on node rone2 Online relocat ...
- uboot的relocation原理具体分析
近期在一直在做uboot的移植工作,uboot中有非常多值得学习的东西.之前总结过uboot的启动流程,但uboot一个非常核心的功能没有细致研究.就是uboot的relocation功能. 这几天研 ...
- Relocation 状态压缩DP
Relocation Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit ...
- SVN报E155024: Invalid relocation destination
大家开发过程会遇到一个场景! 我们在使用SVN版本管理工具进行开发的过程中,前一个版本在Branch->201803 分支开发完成之后,后一版本要求在Branch->201804版本开发 ...
- POJ-2923 Relocation---01背包+状态压缩
题目链接: https://vjudge.net/problem/POJ-2923 题目大意: 有n个货物,给出每个货物的重量,每次用容量为c1,c2的火车运输,问最少需要运送多少次可以将货物运完 思 ...
随机推荐
- Sentry(v20.12.1) K8S 云原生架构探索,SENTRY FOR JAVASCRIPT 故障排除
系列 Sentry-Go SDK 中文实践指南 一起来刷 Sentry For Go 官方文档之 Enriching Events Snuba:Sentry 新的搜索基础设施(基于 ClickHous ...
- SpringBoot 导入插件报错 Cannot resolve plugin org.springframework.boot:spring-boot-maven-plugin:2.4.1
使用 maven 导入插件的时候报错: Cannot resolve plugin org.springframework.boot:spring-boot-maven-plugin:2.4.1 我的 ...
- 【MySql】[ERROR] Can't read from messagefile '/usr/share/mysql/english/errmsg.sys'
[root@zhang bin]# ./mysql_install_db --datadir=/usr/local/mysql/mydata/data/ 2018-08-18 03:09:14 [WA ...
- leetcode 357. 计算各个位数不同的数字个数(DFS,回溯,数学)
题目链接 357. 计算各个位数不同的数字个数 题意: 给定一个非负整数 n,计算各位数字都不同的数字 x 的个数,其中 0 ≤ x < 10n . 示例: 输入: 2 输出: 91 解释: 答 ...
- 【小菜学网络】交换机与MAC地址学习
上一小节介绍了 集线器 ,一种工作于物理层的简单网络设备.由于集线器采用广播的方式中继.转发物理信号,传输效率受到极大制约. 精准转发 为了解决集线器工作效率低下的尴尬,我们需要设计一种更高级的网络设 ...
- egret 解决游戏loading前的黑屏
一.问题 egret游戏loading界面的制作可以参考这个,我就不多赘述啦,步骤也比较详细<Egret制作Loading页面及分步加载资源教程>. 后面我发现即便加上loading,在游 ...
- uni-app开发经验分享九: 组件传值
一.父组件向子组件传值 通过props来实现,子组件通过props来接收父组件传过来的值! 1.逻辑梳理 父组件中: 第一步:引入子组件: import sonShow from '../../com ...
- Py-解决粘包现象,tcp实现并发,tcp实现传输文件的程序,校验思路,线程与进程
黏包现象 TCP粘包就是指发送方发送的若干包数据到达接收方时粘成了一包,从接收缓冲区来看,后一包数据的头紧接着前一包数据的尾,出现粘包的原因是多方面的,可能是来自发送方,也可能是来自接收方TCP接收到 ...
- k8s之共享存储概述以及演示
共享存储机制 k8s对有状态的容器应用或者需要对数据进行持久化的应用,在之前的篇章说过,可以将容器内的目录挂载到宿主机的容器目录或者emptyDir临时存储卷. 另外,k8s还开放了两个资源,分别是P ...
- navicat premium 11.0.17 破解版
下载地址: 链接:https://pan.baidu.com/s/1zBoKRAaQZb2p2weelJpKMQ 提取码:b8dd 一款功能强大的数据库管理工具Navicat Premiu ...