Description

Emma and Eric are moving to their new house they bought after returning from their honeymoon. Fortunately, they have a few friends helping them relocate. To move the furniture, they only have two compact cars, which complicates everything a bit. Since the
furniture does not fit into the cars, Eric wants to put them on top of the cars. However, both cars only support a certain weight on their roof, so they will have to do several trips to transport everything. The schedule for the move is planed like this:

  1. At their old place, they will put furniture on both cars.
  2. Then, they will drive to their new place with the two cars and carry the furniture upstairs.
  3. Finally, everybody will return to their old place and the process continues until everything is moved to the new place.

Note, that the group is always staying together so that they can have more fun and nobody feels lonely. Since the distance between the houses is quite large, Eric wants to make as few trips as possible.

Given the weights wi of each individual piece of furniture and the capacities C1 and C2 of the two cars, how many trips to the new house does the party have to make to move all the furniture? If
a car has capacity C, the sum of the weights of all the furniture it loads for one trip can be at most C.

Input

The first line contains the number of scenarios. Each scenario consists of one line containing three numbers nC1 and C2C1 and C2 are the capacities of the cars (1
≤ Ci ≤ 100) and n is the number of pieces of furniture (1 ≤ n ≤ 10). The following line will contain n integers w1, …, wn, the weights of the furniture (1 ≤ wi ≤
100). It is guaranteed that each piece of furniture can be loaded by at least one of the two cars.

Output

The output for every scenario begins with a line containing “Scenario #i:”, where i is the number of the scenario starting at 1. Then print a single line with the number of trips to the new house they have to make to move
all the furniture. Terminate each scenario with a blank line.

Sample Input

2
6 12 13
3 9 13 3 10 11
7 1 100
1 2 33 50 50 67 98

Sample Output

Scenario #1:
2 Scenario #2:

3

这道题是用状态压缩+01背包,因为物品只有10件,所以会想到状压dp,先把所有的物品都用0和1表示,0表示物品还没有被搬走,1表示已经被搬走,用dp[state]记录从所有物品都未被搬走到状态state所要搬的最少次数。可以先算出哪些状态是一次就能搬走的,这里要用到01背包的思想,先看看该状态下c1可以容纳多少重量,然后用看看把这些重量搬走后剩下的质量能不能被c2所容纳。这些都处理完后,就用状态转移方程dp[j|state]=min(dp[j|state,dp[state]+1},这个方程很巧妙啊,开始还以为是两个能一次搬走的状态结合,其实是利用能一次搬走,所以在之前的基础上加上这个一次能搬走的状态。最后的结果就是dp[1<<(n-1)]啦。

#include<stdio.h>
#include<string.h>
#define inf 88888888
int c1,c2,n,w[15],state,yici[1500],vis[150],dp[1500];
int min(int x,int y){
return x<y?x:y;
}
int panduan(int x)
{
int i,j,sum=0;
memset(vis,0,sizeof(vis));
vis[0]=1;
for(i=1;i<=n;i++){
if((1<<(i-1))&x){
sum+=w[i];
for(j=c1;j>=w[i];j--){
if(vis[j-w[i]]){
vis[j]++;
}
}
}
}
if(sum>c1+c2)return 0;
for(i=0;i<=c1;i++){
if(vis[i] && sum-i<=c2)return 1;
}
return 0;
} int main()
{
int m,i,j,T,t,num1=0;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&n,&c1,&c2);
for(i=1;i<=n;i++){
scanf("%d",&w[i]);
}
t=0;
memset(yici,0,sizeof(yici));
for(i=1;i<(1<<n);i++){
dp[i]=inf;
if(panduan(i)){
yici[++t]=i;
dp[i]=1;
}
}
dp[0]=0;
for(i=1;i<(1<<n);i++){
for(j=1;j<=t;j++){
if(yici[j]&i)continue;
dp[i|yici[j]]=min(dp[i|yici[j]],dp[i]+1);
}
}
num1++;
printf("Scenario #%d:\n",num1);
printf("%d\n\n",dp[(1<<n)-1]);
}
return 0;
}

poj2923 Relocation的更多相关文章

  1. Relocation POJ-2923

    题目链接 题目意思: 有 n 个货物,并且知道了每个货物的重量,每次用载重量分别为c1,c2的火车装载,问最少需要运送多少次可以将货物运完. 分析:本题可以用二进制枚举所有不冲突的方案,再来dp 一下 ...

  2. [poj2923]Relocation_状压dp_01背包

    Relocation poj-2923 题目大意:给出n个物品,有两辆车,两辆车必须一起出动并且每辆车有单独的容量.问最少需要运输多少次才能运走所有货物. 注释:n<=10,容量,物品代价< ...

  3. relocation 错误

    icc test/train/test_lm2.o -shared -lpthread -ldl ./lib/liblm2.a -o liblm2.so ld: ./lib/liblm2.a(cJSO ...

  4. ffmpeg relocation error

    在向imx6移植ffmpeg后,一般的编解码操作没有问题,但是当从摄像头录视频时, ffmpeg -f video4linux2 -s 640*480 -r 10 -i /dev/video0 tes ...

  5. rac one node在线relocation

    1.查看数据库运行状态 $ srvctl status database -d rone Instance rone_2 is running on node rone2 Online relocat ...

  6. uboot的relocation原理具体分析

    近期在一直在做uboot的移植工作,uboot中有非常多值得学习的东西.之前总结过uboot的启动流程,但uboot一个非常核心的功能没有细致研究.就是uboot的relocation功能. 这几天研 ...

  7. Relocation 状态压缩DP

     Relocation Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit  ...

  8. SVN报E155024: Invalid relocation destination

    大家开发过程会遇到一个场景! 我们在使用SVN版本管理工具进行开发的过程中,前一个版本在Branch->201803 分支开发完成之后,后一版本要求在Branch->201804版本开发 ...

  9. POJ-2923 Relocation---01背包+状态压缩

    题目链接: https://vjudge.net/problem/POJ-2923 题目大意: 有n个货物,给出每个货物的重量,每次用容量为c1,c2的火车运输,问最少需要运送多少次可以将货物运完 思 ...

随机推荐

  1. MongoDB的管理-深度长文

    (1) 启动和停止MongoDB: Ubuntu18下启动关闭MongoDB 启动MongoDB: 方法一: systemctl start mongod.service 方法二: 在MongoDB的 ...

  2. python模块详解 | pyquery

    简介 pyquery是一个强大的 HTML 解析库,利用它,我们可以直接解析 DOM 节点的结构,并通过 DOM 节点的一些属性快速进行内容提取. 官方文档:http://pyquery.readth ...

  3. kubernets之从应用访问pod元数据以及其他资源

    一  downwardAPI的应用 1.1  前面我们介绍了如何通过configmap以及secret将配置传入到pod的容器中,但是传递的这些都是预先能够安排和只晓得,对于那些只有当pod创建起来之 ...

  4. 每月一更的《HelloGitHub》第 58 期,来啦!

    HelloGitHub 分享 GitHub 上有趣.入门级的开源项目.欢迎大家: 贡献代码 宣传你觉得优秀的项目 Star 项目️ 本月刊是每月 28 号更新,再见月刊就是年后了.在这里提前祝大家:新 ...

  5. 有状态(Stateful)应用的容器化 - 云+社区 - 腾讯云 https://cloud.tencent.com/developer/article/1020178

    有状态(Stateful)应用的容器化 - 云+社区 - 腾讯云 https://cloud.tencent.com/developer/article/1020178

  6. 异步日志 Loguru

    https://mp.weixin.qq.com/s/hy68s610B9GbL_wgwTn7nA 更优美的python日志管理库Loguru Asynchronous, Thread-safe, M ...

  7. Python的交互模式和直接运行.py文件有什么区别

    使用文本编辑器 - 廖雪峰的官方网站 https://www.liaoxuefeng.com/wiki/1016959663602400/1017024645952992 直接输入python进入交互 ...

  8. sentry 错误监控 报警

    错误监控 报警 Sentry | Error Tracking Software - JavaScript, Python, PHP, Ruby, more https://sentry.io/wel ...

  9. HarmonyOS三方件开发指南(7)——compress组件

    目录:1. 组件compress功能介绍2. 组件compress使用方法3. 组件compress开发实现 1. 组件compress功能介绍1.1.  组件介绍:        compress是 ...

  10. windows提权常用系统漏洞与补丁编号速查对照表

    #Security Bulletin #KB #Description #Operating System CVE-2020-0787 [Windows Background Intelligent ...