Description

Emma and Eric are moving to their new house they bought after returning from their honeymoon. Fortunately, they have a few friends helping them relocate. To move the furniture, they only have two compact cars, which complicates everything a bit. Since the
furniture does not fit into the cars, Eric wants to put them on top of the cars. However, both cars only support a certain weight on their roof, so they will have to do several trips to transport everything. The schedule for the move is planed like this:

  1. At their old place, they will put furniture on both cars.
  2. Then, they will drive to their new place with the two cars and carry the furniture upstairs.
  3. Finally, everybody will return to their old place and the process continues until everything is moved to the new place.

Note, that the group is always staying together so that they can have more fun and nobody feels lonely. Since the distance between the houses is quite large, Eric wants to make as few trips as possible.

Given the weights wi of each individual piece of furniture and the capacities C1 and C2 of the two cars, how many trips to the new house does the party have to make to move all the furniture? If
a car has capacity C, the sum of the weights of all the furniture it loads for one trip can be at most C.

Input

The first line contains the number of scenarios. Each scenario consists of one line containing three numbers nC1 and C2C1 and C2 are the capacities of the cars (1
≤ Ci ≤ 100) and n is the number of pieces of furniture (1 ≤ n ≤ 10). The following line will contain n integers w1, …, wn, the weights of the furniture (1 ≤ wi ≤
100). It is guaranteed that each piece of furniture can be loaded by at least one of the two cars.

Output

The output for every scenario begins with a line containing “Scenario #i:”, where i is the number of the scenario starting at 1. Then print a single line with the number of trips to the new house they have to make to move
all the furniture. Terminate each scenario with a blank line.

Sample Input

2
6 12 13
3 9 13 3 10 11
7 1 100
1 2 33 50 50 67 98

Sample Output

Scenario #1:
2 Scenario #2:

3

这道题是用状态压缩+01背包,因为物品只有10件,所以会想到状压dp,先把所有的物品都用0和1表示,0表示物品还没有被搬走,1表示已经被搬走,用dp[state]记录从所有物品都未被搬走到状态state所要搬的最少次数。可以先算出哪些状态是一次就能搬走的,这里要用到01背包的思想,先看看该状态下c1可以容纳多少重量,然后用看看把这些重量搬走后剩下的质量能不能被c2所容纳。这些都处理完后,就用状态转移方程dp[j|state]=min(dp[j|state,dp[state]+1},这个方程很巧妙啊,开始还以为是两个能一次搬走的状态结合,其实是利用能一次搬走,所以在之前的基础上加上这个一次能搬走的状态。最后的结果就是dp[1<<(n-1)]啦。

#include<stdio.h>
#include<string.h>
#define inf 88888888
int c1,c2,n,w[15],state,yici[1500],vis[150],dp[1500];
int min(int x,int y){
return x<y?x:y;
}
int panduan(int x)
{
int i,j,sum=0;
memset(vis,0,sizeof(vis));
vis[0]=1;
for(i=1;i<=n;i++){
if((1<<(i-1))&x){
sum+=w[i];
for(j=c1;j>=w[i];j--){
if(vis[j-w[i]]){
vis[j]++;
}
}
}
}
if(sum>c1+c2)return 0;
for(i=0;i<=c1;i++){
if(vis[i] && sum-i<=c2)return 1;
}
return 0;
} int main()
{
int m,i,j,T,t,num1=0;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&n,&c1,&c2);
for(i=1;i<=n;i++){
scanf("%d",&w[i]);
}
t=0;
memset(yici,0,sizeof(yici));
for(i=1;i<(1<<n);i++){
dp[i]=inf;
if(panduan(i)){
yici[++t]=i;
dp[i]=1;
}
}
dp[0]=0;
for(i=1;i<(1<<n);i++){
for(j=1;j<=t;j++){
if(yici[j]&i)continue;
dp[i|yici[j]]=min(dp[i|yici[j]],dp[i]+1);
}
}
num1++;
printf("Scenario #%d:\n",num1);
printf("%d\n\n",dp[(1<<n)-1]);
}
return 0;
}

poj2923 Relocation的更多相关文章

  1. Relocation POJ-2923

    题目链接 题目意思: 有 n 个货物,并且知道了每个货物的重量,每次用载重量分别为c1,c2的火车装载,问最少需要运送多少次可以将货物运完. 分析:本题可以用二进制枚举所有不冲突的方案,再来dp 一下 ...

  2. [poj2923]Relocation_状压dp_01背包

    Relocation poj-2923 题目大意:给出n个物品,有两辆车,两辆车必须一起出动并且每辆车有单独的容量.问最少需要运输多少次才能运走所有货物. 注释:n<=10,容量,物品代价< ...

  3. relocation 错误

    icc test/train/test_lm2.o -shared -lpthread -ldl ./lib/liblm2.a -o liblm2.so ld: ./lib/liblm2.a(cJSO ...

  4. ffmpeg relocation error

    在向imx6移植ffmpeg后,一般的编解码操作没有问题,但是当从摄像头录视频时, ffmpeg -f video4linux2 -s 640*480 -r 10 -i /dev/video0 tes ...

  5. rac one node在线relocation

    1.查看数据库运行状态 $ srvctl status database -d rone Instance rone_2 is running on node rone2 Online relocat ...

  6. uboot的relocation原理具体分析

    近期在一直在做uboot的移植工作,uboot中有非常多值得学习的东西.之前总结过uboot的启动流程,但uboot一个非常核心的功能没有细致研究.就是uboot的relocation功能. 这几天研 ...

  7. Relocation 状态压缩DP

     Relocation Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit  ...

  8. SVN报E155024: Invalid relocation destination

    大家开发过程会遇到一个场景! 我们在使用SVN版本管理工具进行开发的过程中,前一个版本在Branch->201803 分支开发完成之后,后一版本要求在Branch->201804版本开发 ...

  9. POJ-2923 Relocation---01背包+状态压缩

    题目链接: https://vjudge.net/problem/POJ-2923 题目大意: 有n个货物,给出每个货物的重量,每次用容量为c1,c2的火车运输,问最少需要运送多少次可以将货物运完 思 ...

随机推荐

  1. Centos7 Nginx+PHP7 配置

    Centos7 Nginx+PHP7 配置 内容: 源码编译安装Nginx和PHP 配置PHP和Nginx,实现Nginx转发到PHP处理 测试 设置Nginx.PHP开机自启 安装的版本: Ngin ...

  2. 【Linux】awk想打印制定列以后的所有列

    今天偶然研究awk,有一个文件,文件内容是全篇的1 2 3 4 5 6 7 8 9 0 现在想打印除了第一列意外的所有列 文件内容: [root@localhost ~]# cat test.txt ...

  3. 【Oracle】用sqlplus登录的各种方式

    1.本地登录 sqlplus / as sysdba 2.账号密码登录 sqlplus user/passwd 3.选择实例登录 sqlplus user/passwd@实例名   例如 sqlplu ...

  4. kubernets之headless

    一  认识headless服务 1服务以及服务的作用相信大家都已经耳熟能详了吗,服务接受请求,并且随机的将请求转发到相关联的任一pod来处理请求,但是考虑另外一种场景, 如果有客户端需要知道这个服务关 ...

  5. WPF NET5 Prism8.0的升级指南

    前言 ​ 曾经我以学习的目的写了关于在.NET Core3.1使用Prism的系列文章.NET Core 3 WPF MVVM框架 Prism系列文章索引,也谢谢大家的支持,事实上当初的版本则是Pri ...

  6. oracle修改表栏位类型

    需求:ID栏位在创建的时候是varchar类型,后续要修改为number类型 因为oracle修改表栏位类型的时候需要栏位内没有数据,因此无法直接把ID从varchar修改为number 1.新建一个 ...

  7. 天天用SpringBoot居然还不知道它的自动装配的原理?

    引言 最近有个读者在面试,面试中被问到了这样一个问题"看你项目中用到了springboot,你说下springboot的自动配置是怎么实现的?"这应该是一个springboot里面 ...

  8. Java运算符概要与数学函数

    运算符概要 在Java中,使用算术运算符+,-,*,/表示加减乘除运算,当参与/的运算的两个操作数都是整数时,表示整数除法,否则,表示浮点除法.整数的求余操作(有时称为取模),用%表示,例如,15/2 ...

  9. HTML基础复习1

    网页:HTML(超文本标记语言) 网页分为静态网页和动态网页,区别:动态网页中可以加入脚本代码,还可以动态的引入数据库中的信息. HTML的结构 <html> <head>头信 ...

  10. Py-面向对象,组合,继承

    面向对象 只有特定对象能使用特定的几个方法对象=特征+动作 def dog(name,gender,type): #狗的动作 def jiao(dog): print('一条狗%s,汪汪汪' %dog ...