Bubble Cup 13 - Finals [Online Mirror, unrated, Div. 1] K. Lonely Numbers (数学)

题意:定义两个数\(a,b\)是朋友,如果:\(gcd(a,b)\),\(\frac{a}{gcd(a,b)}\),\(\frac{b}{gcd(a,b)}\)能构成三角形,现在给你一个正整数\(n\),问你\(1-n\)中有多少数没有朋友.
题解:首先考虑合数,设\(a=b*c\),\(b\ge c\),\(b\ge 2,c\ge 2\),我们知道:\(gcd(b,b-1)=1\),那么:\(gcd(b*c,(b-1)*c)=c\),则对于:\(b*c\),\((b-1)*c\),\(gcd(b*c,(b-1)*c)=c\),由三角形构成条件不难得到不等式:\(b+b-1>c\),\(b+c>b-1\),\(b-1+c>b\),这三个不等式是恒成立的,所以合数是不满足条件的.
接下来我们考虑质数,对于两个互质的数,我们可以得到三个数\(p_1,p_2,1\),这三个数永远不可能构成三角形(不多解释了),假如两个质数不互质,那么\(p|a\),那么我们可以得到三个数:\(1,P,\frac{a}{p}\),而\(a\)最小为\(p^2\),如果能构成三角形的话:\(p+1>\frac{a}{p}\),\(\frac{a}{p}+1>p\),所以当且仅当\(a=p^2\),满足条件,所以对于\([1,n]\)中的质数\(p\),如果存在\(p^2\),那么它一定不是孤单的,所以\(p^2>n\)就是我们此题的核心限制条件,也就转化为我们要求\((\sqrt{n},n]\)中的质数个数.
代码:
#include <bits/stdc++.h>
#define ll long long
#define fi first
#define se second
#define pb push_back
#define me memset
#define rep(a,b,c) for(int a=b;a<=c;++a)
#define per(a,b,c) for(int a=b;a>=c;--a)
const int N = 1e6 + 10;
const int mod = 1e9 + 7;
const int INF = 0x3f3f3f3f;
using namespace std;
typedef pair<int,int> PII;
typedef pair<ll,ll> PLL;
ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b) {return a/gcd(a,b)*b;}
int t;
int n;
int prime[N],cnt;
int res[N];
bool st[N];
void get_prime(int n){
rep(i,2,n){
if(!st[i]){
prime[cnt++]=i;
}
for(int j=0;j<cnt && prime[j]<=n/i;++j){
st[i*prime[j]]=true;
if(i%prime[j]==0) break;
}
res[i]=cnt;
}
}
int main() {
ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
cin>>t;
get_prime(1000000);
while(t--){
cin>>n;
cout<<res[n]-res[(int)sqrt(n)]+1<<'\n'; //不能取到p^2
}
return 0;
}
Bubble Cup 13 - Finals [Online Mirror, unrated, Div. 1] K. Lonely Numbers (数学)的更多相关文章
- Bubble Cup 12 - Finals Online Mirror, unrated, Div. 1
Bubble Cup 12 - Finals Online Mirror, unrated, Div. 1 C. Jumping Transformers 我会状压 DP! 用 \(dp[x][y][ ...
- Bubble Cup 12 - Finals [Online Mirror, unrated, Div. 1] E. Product Tuples
题意略,题解生成函数练习题,1+(q-ai)x卷积即可,线段树优化(类似分治思想) //#pragma GCC optimize(2) //#pragma GCC optimize(3) //#pra ...
- 【简单dfs】Bubble Cup 14 - Finals Online Mirror (Unrated, ICPC Rules, Teams Preferred, Div. 2), problem: (J) Robot Factory,
传送门 Problem - 1600J - Codeforces 题目 题意 给定n行m列, 求每个连通块由多少格子组成,并将格子数从大到小排序输出 对于每个格子都有一个数(0~15),将其转化 ...
- Bubble Cup 11 - Finals [Online Mirror, Div. 1]题解 【待补】
Bubble Cup 11 - Finals [Online Mirror, Div. 1] 一场很好玩的题啊! I. Palindrome Pairs 枚举哪种字符出现奇数次. G. AI robo ...
- Bubble Cup X - Finals [Online Mirror] B. Neural Network country 矩阵快速幂加速转移
B. Neural Network country time limit per test 2 seconds memory limit per test 256 megabytes Due to t ...
- Codeforces Bubble Cup 8 - Finals [Online Mirror] B. Bribes lca
题目链接: http://codeforces.com/contest/575/problem/B 题解: 把链u,v拆成u,lca(u,v)和v,lca(u,v)(v,lca(u,v)是倒过来的). ...
- Codeforces Bubble Cup 8 - Finals [Online Mirror]H. Bots 数学
H. Bots Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/575/problem/H Desc ...
- Codeforces Bubble Cup 8 - Finals [Online Mirror] D. Tablecity 数学题
D. Tablecity Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/575/problem/D ...
- Codeforces Bubble Cup 8 - Finals [Online Mirror] F. Bulbo DP
F. Bulbo Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/575/problem/F Des ...
随机推荐
- AI智能皮肤测试仪助力美业数字化营销 实现门店与用户双赢局面
当皮肤遇到AI智能,会有怎么样的火花呢?随着生活水平的提升,人们对肌肤保养护理的需求也越来越高,人要美,皮肤养护也要更精准,数字化必将成为美业发展的新契机.新机遇下肌肤管家SkinRun为美业客户提供 ...
- maven仓库和镜像
目录 简介 本地仓库 远程仓库 远程仓库的更新 远程仓库的认证 部署到远程仓库 快照版本 依赖解析 镜像 本文主要是针对<maven实战>书中关键知识点的学习记录,未免有纰漏或描述不到之处 ...
- Session、Cookie与Token
http协议是无状态协议 协议是指计算机通信网络中两台计算机之间进行通信所必须共同遵守的规定或规则,超文本传输协议(HTTP)是一种通信协议,它允许将超文本标记语言(HTML)文档从Web服务器传送到 ...
- explain select * from xuehao;
mysql> explain select * from xuehao;+----+-------------+--------+------+---------------+------+-- ...
- 安装percona-toolkit
http://www.percona.com/software/percona-toolkityum -y install perl-DBIyum -y install perl-DBD-mysqly ...
- 【Oracle】用sqlplus登录的各种方式
1.本地登录 sqlplus / as sysdba 2.账号密码登录 sqlplus user/passwd 3.选择实例登录 sqlplus user/passwd@实例名 例如 sqlplu ...
- 【Oracle】整库导出后怎么恢复到指定用户的指定表
在导出的时候,整库导出 这里使用的是dba权限 $exp "'/ as sysdba'" file=full20180227.dmp log=exp_full20180227.lo ...
- Android之旅2
一.动静态调试四大组件 (一).activity 一个又一个的界面,需要在manifest里面注册 (二). (三).service (四).broadcast receiver 二.开始分析 1.先 ...
- JAVA编程中button按钮,actionlistener和mouseClicked区别
在java的编程中,对于按钮button 有两个事件: 1.actionPerformed 2.mouseClicked 区别: actionPerformed:一般事件,仅侦听鼠标左键的单击事件,右 ...
- web框架的本质:
简单的web框架 web的应用本质其实就是socket服务器,用户所使用的浏览器就是一个cocket客户端,客户使用浏览器发送的请求会被服务接收,服务器会按照http协议的响应协议来回复请求,这样的网 ...