Rt

注意len要为2的幂

#include <bits/stdc++.h>
using namespace std;
const double PI = acos(-1.0); inline int read()
{
char c=getchar();int x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
} int n, m;
struct Complex {
double x, y;
Complex(double _x = 0.0, double _y = 0.0) {
x = _x;
y = _y;
}
Complex operator + (const Complex &b) const {
return Complex(x + b.x, y + b.y);
}
Complex operator - (const Complex &b) const {
return Complex(x - b.x, y - b.y);
}
Complex operator * (const Complex &b) const {
return Complex(x * b.x - y * b.y, x * b.y + y * b.x);
}
}; void change(Complex y[], int len)
{
int i, j, k;
for(i = 1, j = len / 2; i < len - 1; i++)
{
if(i < j) swap(y[i], y[j]);
k = len / 2;
while(j >= k)
{
j -= k;
k /= 2;
}
if(j < k) j += k;
}
} void fft(Complex y[], int len, int on)
{
change(y, len);
for(int h = 2; h <= len; h <<= 1)
{
Complex wn(cos(-on * 2 * PI / h), sin(-on * 2 * PI / h));
for(int j = 0; j < len; j += h)
{
Complex w(1, 0);
for(int k = j; k < j + h / 2; k++)
{
Complex u = y[k];
Complex t = w * y[k + h / 2];
y[k] = u + t;
y[k + h / 2] = u - t;
w = w * wn;
}
}
} if(on == -1)
for(int i = 0; i < len; i++)
y[i].x /= len;
} Complex x1[4000005], x2[4000005]; int main()
{
scanf("%d%d", &n, &m);
for(int i = 0; i <= n; i++) {
int u; u = read();
x1[i] = Complex(1.0 * u, 0);
}
for(int i = 0; i <= m; i++) {
int u; u = read();
x2[i] = Complex(1.0 * u, 0);
} int len = 1;
while(len <= n + m) len <<= 1; fft(x1, len, 1);
fft(x2, len, 1);
for(int i = 0; i <= len; i++) x1[i] = x1[i] * x2[i];
fft(x1, len, -1); for(int i = 0; i <= n + m; i++) printf("%d ", (int)(x1[i].x + 0.5));
return 0;
}

P3803 [模板] 多项式乘法 (FFT)的更多相关文章

  1. 洛谷.3803.[模板]多项式乘法(FFT)

    题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...

  2. 多项式乘法(FFT)学习笔记

    ------------------------------------------本文只探讨多项式乘法(FFT)在信息学中的应用如有错误或不明欢迎指出或提问,在此不胜感激 多项式 1.系数表示法  ...

  3. [uoj#34] [洛谷P3803] 多项式乘法(FFT)

    新技能--FFT. 可在 \(O(nlogn)\) 时间内完成多项式在系数表达与点值表达之间的转换. 其中最关键的一点便为单位复数根,有神奇的折半性质. 多项式乘法(即为卷积)的常见形式: \[ C_ ...

  4. @总结 - 1@ 多项式乘法 —— FFT

    目录 @0 - 参考资料@ @1 - 一些概念@ @2 - 傅里叶正变换@ @3 - 傅里叶逆变换@ @4 - 迭代实现 FFT@ @5 - 参考代码实现@ @6 - 快速数论变换 NTT@ @7 - ...

  5. 【learning】多项式乘法&fft

    [吐槽] 以前一直觉得这个东西十分高端完全不会qwq 但是向lyy.yxq.yww.dtz等dalao们学习之后发现这个东西的代码实现其实极其简洁 于是趁着还没有忘记赶紧来写一篇博 (说起来这篇东西的 ...

  6. UOJ 34 多项式乘法 FFT 模板

    这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...

  7. [模板] 多项式: 乘法/求逆/分治fft/微积分/ln/exp/幂

    多项式 代码 const int nsz=(int)4e5+50; const ll nmod=998244353,g=3,ginv=332748118ll; //basic math ll qp(l ...

  8. 【模板】多项式乘法(FFT)

    题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: 第一行2个正整数n,m. 接下来一行n+1个数字,从低到高表示F(x)的系 ...

  9. 【Luogu3808】多项式乘法FFT(FFT)

    题目戳我 一道模板题 自己尝试证明了大部分... 剩下的还是没太证出来... 所以就是一个模板放在这里 以后再来补东西吧.... #include<iostream> #include&l ...

随机推荐

  1. 【JavaWeb】JSP 页面

    JSP 页面 简介 JSP(Java Server Pages),即 Java 的服务器页面.它的主要作用是代替 Servlet 程序回传 HTML 页面的数据,因为 Servlet 程序回传 HTM ...

  2. 【Redis3.0.x】配置文件

    Redis3.0.x 配置文件 概述 Redis 的配置文件位于Redis安装目录下,文件名为 redis.conf. 可以通过 CONFIG 命令查看或设置配置项. Redis 命令不区分大小写. ...

  3. SonarQube学习(六)- SonarQube之扫描报告解析

    登录http://192.16.1.105:9000,加载项目扫描情况 点击项目名称,查看报告总览 开发人员主要关注为[问题]标签页. 类型 主要关注为bug和漏洞. 其中bug是必须要修复的,漏洞是 ...

  4. awk中的if ,else

    local pct="$(awk -v one="$1" -v two="$2" 'BEGIN{ if (two > 0) { printf & ...

  5. 浅谈JavaScript代码性能优化

    可以通过https://jsbench.me/测试网站完成性能测试. 一.慎用全局变量 1.全局变量定义在全局执行上下文,是所有作用域链的顶端,在局部作用域中没找到的变量都会到全局变量中去查找,所以说 ...

  6. js中常用追加元素的几种方法

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  7. 前端知识(一)06 element-ui-谷粒学院

    目录 一.element-ui 二.element-ui实例 1.引入脚本库 2.引入css 3.引入js 4.渲染讲师列表 5.浏览器中运行 一.element-ui element-ui 是饿了么 ...

  8. .net code+vue 文件上传

    后端技术 .net code 官方文档 https://docs.microsoft.com/zh-cn/aspnet/core/mvc/models/file-uploads?view=aspnet ...

  9. argparse的简单使用

    简单记录一下argparse的用法 这个是针对我做区块链的一些demo时需要用到的,仅把用到了的一些操作记录,argparse很强大,更多细致的操作可以参考:https://docs.python.o ...

  10. 中文电子病历命名实体识别(CNER)研究进展

    中文电子病历命名实体识别(CNER)研究进展 中文电子病历命名实体识别(Chinese Clinical Named Entity Recognition, Chinese-CNER)任务目标是从给定 ...