1497: [NOI2006]最大获利

Time Limit: 5 Sec  Memory Limit: 64 MB
Submit: 4375  Solved: 2142
[Submit][Status][Discuss]

Description

新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战。THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成前期市场研究、站址勘测、最优化等项目。在前期市场调查和站址勘测之后,公司得到了一共N个可以作为通讯信号中转站的地址,而由于这些地址的地理位置差异,在不同的地方建造通讯中转站需要投入的成本也是不一样的,所幸在前期调查之后这些都是已知数据:建立第i个通讯中转站需要的成本为Pi(1≤i≤N)。另外公司调查得出了所有期望中的用户群,一共M个。关于第i个用户群的信息概括为Ai, Bi和Ci:这些用户会使用中转站Ai和中转站Bi进行通讯,公司可以获益Ci。(1≤i≤M, 1≤Ai, Bi≤N) THU集团的CS&T公司可以有选择的建立一些中转站(投入成本),为一些用户提供服务并获得收益(获益之和)。那么如何选择最终建立的中转站才能让公司的净获利最大呢?(净获利 = 获益之和 - 投入成本之和)

Input

输入文件中第一行有两个正整数N和M 。第二行中有N个整数描述每一个通讯中转站的建立成本,依次为P1, P2, …, PN 。以下M行,第(i + 2)行的三个数Ai, Bi和Ci描述第i个用户群的信息。所有变量的含义可以参见题目描述。

Output

你的程序只要向输出文件输出一个整数,表示公司可以得到的最大净获利。

Sample Input

5 5
1 2 3 4 5
1 2 3
2 3 4
1 3 3
1 4 2
4 5 3

Sample Output

4

HINT

【样例说明】选择建立1、2、3号中转站,则需要投入成本6,获利为10,因此得到最大收益4。【评分方法】本题没有部分分,你的程序的输出只有和我们的答案完全一致才能获得满分,否则不得分。【数据规模和约定】 80%的数据中:N≤200,M≤1 000。 100%的数据中:N≤5 000,M≤50 000,0≤Ci≤100,0≤Pi≤100。


中转站建点,点权-p

用户建点,点权C,向A和B连边

转化成最大闭合子图问题,用最小割求解

//
// main.cpp
// noi2006最大获利
//
// Created by Candy on 26/11/2016.
// Copyright © 2016 Candy. All rights reserved.
// #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=,M=,INF=2e9;
int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
int n,m,p[N],u,v,c,s,t;
struct edge{
int v,ne,c,f;
}e[M<<];
int cnt,h[N];
inline void ins(int u,int v,int c){
cnt++;
e[cnt].v=v;e[cnt].c=c;e[cnt].f=;e[cnt].ne=h[u];h[u]=cnt;
cnt++;
e[cnt].v=u;e[cnt].c=;e[cnt].f=;e[cnt].ne=h[v];h[v]=cnt;
}
int cur[N],sum=;
int vis[N],d[N],q[N],head,tail;
bool bfs(){
memset(vis,,sizeof(vis));
memset(d,,sizeof(d));
head=tail=;
q[tail++]=s;d[s]=;vis[s]=;
while(head!=tail){
int u=q[head++];
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v;
if(!vis[v]&&e[i].c>e[i].f){
vis[v]=;d[v]=d[u]+;
q[tail++]=v;
if(v==t) return ;
}
}
}
return ;
}
int dfs(int u,int a){
if(u==t||a==) return a;
int flow=,f;
for(int &i=cur[u];i;i=e[i].ne){
int v=e[i].v;
if(d[v]==d[u]+&&(f=dfs(v,min(a,e[i].c-e[i].f)))>){
flow+=f;
e[i].f+=f;
e[((i-)^)+].f-=f;
a-=f;
if(a==) break;
}
}
return flow;
}
int dinic(){
int flow=;
while(bfs()){
for(int i=s;i<=t;i++) cur[i]=h[i];
flow+=dfs(s,INF);
}
return flow;
}
int main(int argc, const char * argv[]) {
n=read();m=read();s=;t=n+m+;
for(int i=;i<=n;i++) p[i]=read(),ins(m+i,t,p[i]);
for(int i=;i<=m;i++){
u=read();v=read();c=read();sum+=c;
ins(s,i,c);
ins(i,m+u,INF);
ins(i,m+v,INF);
}
int tmp=dinic();
printf("%d",sum-tmp);
return ;
}

BZOJ1497: [NOI2006]最大获利[最小割 最大闭合子图]的更多相关文章

  1. bzoj1497: [NOI2006]最大获利(最大权闭合子图)

    1497: [NOI2006]最大获利 题目:传送门 题解: %%%关于最大权闭合子图很好的入门题 简单说一下什么叫最大权闭合子图吧...最简单的解释就是正权边连源点,负权边连汇点(注意把边权改为正数 ...

  2. 【BZOJ1497】[NOI2006]最大获利 最小割

    裸的最小割,很经典的模型. 建图:要求总收益-总成本最大,那么将每条弧与源点相连,流量为成本,每个收益与汇点相连,流量为收益,然后每条弧与它所能到达的收益相连,流量为inf. 与源点相连的是未被选中的 ...

  3. BZOJ.1497.[NOI2006]最大获利(最小割 最大权闭合子图Dinic)

    题目链接 //裸最大权闭合子图... #include<cstdio> #include<cctype> #include<algorithm> #define g ...

  4. bzoj 1497 [NOI2006]最大获利【最大权闭合子图+最小割】

    不要被5s时限和50000点数吓倒!大胆网络流!我一个5w级别的dinic只跑了1s+! 看起来没有最大权闭合子图的特征--限制,实际上还是有的. 我们需要把中转站看成负权点,把p看成点权,把客户看成 ...

  5. BZOJ 1497: [NOI2006]最大获利 最小割

    1497: [NOI2006]最大获利 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1497 Description 新的技术正冲击着手 ...

  6. 1497: [NOI2006]最大获利(最大权闭合子图)

    1497: [NOI2006]最大获利 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 5503  Solved: 2673 Description 新的技 ...

  7. NOI2006 最大获利(最大权闭合子图)

    codevs 1789 最大获利 2006年NOI全国竞赛  时间限制: 2 s  空间限制: 128000 KB   题目描述 Description 新的技术正冲击着手机通讯市场,对于各大运营商来 ...

  8. BZOJ 1497: [NOI2006]最大获利(最大权闭合子图)

    1497: [NOI2006]最大获利 Time Limit: 5 Sec  Memory Limit: 64 MB Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机 ...

  9. _bzoj1497 [NOI2006]最大获利【最大权闭合子图】

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1497 保存最大流模版. 选一个用户群,就必须要选对应的两个中转站,这种关系类似“最大全闭合子 ...

随机推荐

  1. ADO.net数据绑定

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Linq; usin ...

  2. JS进阶之非阻塞

    回调函数,阻塞和非阻塞对于初学者来说总是一些不好理解的东西,最好的办法就是通过实际写代码去体会.笔者今天就通过一个例子来简单解释一下JS的非阻塞,分享分享我的理解. 首先回调函数:这是一个异步过程,简 ...

  3. PHP中new static()与new self()的比较

    今天在coding的时候,发现了 new static(),觉得实例化的地方不是应该是 new self()吗?查询了一下才知道两者的区别: 1)在有子类集成的时候,两者的表现不一样 2)php 5. ...

  4. .net 实体类与json转换(.net自带类库实现)更新

    上一篇文章中写到在.net中实体类跟json格式的相互转换,今天在做具体转换时候,发现之前版本的jsonhelp对于日期类型的转换不全面.之前版本的jsonhelp中从实体类转换成json格式时候,将 ...

  5. ABP 初探 之 多语言

    最近几天空闲时间比较多,就研究Abp的多语言,Abp是基于接口的依赖注入,有很多思想与方法都很好,需自己深入体会与应用,转化成自己的思想应用于实践. 本篇介绍基于 开源Demo ModuleZeroS ...

  6. Meta标签详解(HTML JAVASCRIPT)

    Meta标签详解,在网上转的,希望对大家有用 您的个人网站即使做得再精彩,在“浩瀚如海”的网络空间中,也如一叶扁舟不易为人发现,如何推广 个人网站,人们首先想到的方法无外乎以下几种: ● 在搜索引擎中 ...

  7. java语言中除数为零问题

    在以下几个例子中,输出结果如何? float aa=0; System.out.println(aa/0); System.out.println(1/aa); System.out.println( ...

  8. 理解CSV文件以及ABAP中的相关操作

    在很多ABAP开发中,我们使用CSV文件,有时候,关于CSV文件本身的一些问题使人迷惑.它仅仅是一种被逗号分割的文本文档吗? 让我们先来看看接下来可能要处理的几个相关组件的词汇的语义. Separat ...

  9. Linux下安装使用Solr

    Linux下安装使用Solr 1.首先下载Solr.mmseg4j分词包.tomcat并解压,这用google.百度都可以搜索得到下载地址. 2.因为要使用到中文分词,所以要设置编码,进入tomcat ...

  10. 一起来学习android自定义控件3——边缘凹凸的View

    前言 最近做项目的时候遇到一个卡劵的效果,由于自己觉得用图片来做的话可以会出现适配效果不好,再加上自己自定义view方面的知识比较薄弱,所以想试试用自定义View来实现.先看设计图效果 实现分析 上面 ...