题解 洛谷 P3639 【[APIO2013]道路费用 】
不难想到可以\(2^k\)去枚举\(k\)条新边的选择方案,然后加入原图中的边来使图连通,用当前方案的收益去更新答案,但是这样复杂度过不去。
可以先把\(k\)条新边都连上,然后再加入边权从小到大排序过后的原图的边,直到图连通。后加入的原图的边在任何一个新边的选择方案都是要加入的,因为找这些边时是选了所有\(k\)条新边,其他方案只会比这时选择更少的新边,所以为保证连通,这些后加入的边肯定是要选择的,可能还要加入更多的原图中的边,同时这些边是按边权排序后的,所以也能满足题目中最小生成树的要求。
根据原图中边权互不相同,所以这些后加入的边的集合是唯一的。因为这些后加入的边是必选的,所以可以把只考虑这些边的连通块缩成点,发现缩点后的数量最多为\(k+1\)。
上面也说到,可能在一个新边的选择方案中,还需加入更多的原图中的边,这些边就是使这\(k+1\)个点连通的边,把这\(k\)条边记录下来,作为处理选择方案时的备选边。
然后就可以按之前的做法来处理了,\(2^k\)去枚举\(k\)条新边的选择方案,然后加入这\(k\)条备选边来使图连通,然后用当前方案的收益去更新答案。
具体实现加边判断连通性和缩点时用并查集比较方便。
总复杂度为\(O(m \log m + 2^k k^2)\)。
\(code:\)
#include<bits/stdc++.h>
#define maxn 3000010
#define inf 1000000000
using namespace std;
typedef long long ll;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
int n,m,k,root,cnt,tot;
ll ans,sum;
int id[maxn],fa[maxn],de[maxn];
ll p[maxn],pe[maxn],siz[maxn],mi[maxn];
bool flag;
struct edge
{
int to,nxt;
}e[maxn];
int head[maxn],edge_cnt;
void add(int from,int to)
{
e[++edge_cnt]=(edge){to,head[from]};
head[from]=edge_cnt;
}
struct Edge
{
int x,y,v;
}e1[maxn],e2[maxn],e3[maxn];
bool cmp(const Edge &a,const Edge &b)
{
return a.v<b.v;
}
struct node
{
int f[maxn];
int find(int x)
{
return f[x]==x?x:f[x]=find(f[x]);
}
void merge(int x,int y)
{
x=find(x),y=find(y);
if(x==y) return;
f[x]=y;
}
}A,B;
void dfs(int x,int fath)
{
fa[x]=fath,de[x]=de[fath]+1,siz[x]=pe[x];
for(int i=head[x];i;i=e[i].nxt)
{
int y=e[i].to;
if(y==fath) continue;
dfs(y,x),siz[x]+=siz[y];
}
}
int main()
{
read(n),read(m),read(k);
for(int i=1;i<=n;++i) A.f[i]=B.f[i]=i;
for(int i=1;i<=m;++i)
read(e1[i].x),read(e1[i].y),read(e1[i].v);
sort(e1+1,e1+m+1,cmp);
for(int i=1;i<=k;++i)
read(e2[i].x),read(e2[i].y);
for(int i=1;i<=n;++i) read(p[i]);
for(int i=1;i<=k;++i) A.merge(e2[i].x,e2[i].y);
for(int i=1;i<=m;++i)
{
int x=e1[i].x,y=e1[i].y;
if(A.find(x)==A.find(y)) continue;
A.merge(x,y),B.merge(x,y);
}
for(int i=1;i<=n;++i)
if(B.find(i)==i)
id[i]=++tot;
root=id[B.find(1)],A=B;
for(int i=1;i<=n;++i) pe[id[B.find(i)]]+=p[i];
for(int i=1;i<=m;++i)
{
int x=e1[i].x,y=e1[i].y;
if(B.find(x)==B.find(y)) continue;
B.merge(x,y),e3[++cnt]=e1[i];
}
for(int i=1;i<=k;++i) e2[i].x=id[A.find(e2[i].x)],e2[i].y=id[A.find(e2[i].y)];
for(int i=1;i<=cnt;++i) e3[i].x=id[A.find(e3[i].x)],e3[i].y=id[A.find(e3[i].y)];
for(int S=0;S<(1<<k);++S)
{
edge_cnt=sum=flag=0;
for(int i=1;i<=tot;++i) A.f[i]=i,head[i]=0,mi[i]=inf;
for(int i=1;i<=k;++i)
{
if(!(S&(1<<(i-1)))) continue;
int x=e2[i].x,y=e2[i].y;
if(A.find(x)==A.find(y))
{
flag=true;
break;
}
A.merge(x,y),add(x,y),add(y,x);
}
if(flag) continue;
for(int i=1;i<=cnt;++i)
{
int x=e3[i].x,y=e3[i].y;
if(A.find(x)==A.find(y)) continue;
A.merge(x,y),add(x,y),add(y,x);
}
dfs(root,0);
for(int i=1;i<=cnt;++i)
{
int x=e3[i].x,y=e3[i].y;
ll v=e3[i].v;
while(x!=y)
{
if(de[x]<de[y]) swap(x,y);
mi[x]=min(mi[x],v),x=fa[x];
}
}
for(int i=1;i<=k;++i)
{
if(!(S&(1<<(i-1)))) continue;
int x=e2[i].x,y=e2[i].y;
if(de[x]<de[y]) swap(x,y);
sum+=mi[x]*siz[x];
}
ans=max(ans,sum);
}
printf("%lld",ans);
return 0;
}
题解 洛谷 P3639 【[APIO2013]道路费用 】的更多相关文章
- 洛谷P3639 [APIO2013] 道路费用 [生成树的特殊算法]
题目传送门 道路费用 格式难调,题面就不放了. 分析: 这是一道要细(yan)心(jing)的生成树的好(gui)题. 首先我们看到$k$的范围非常小,那么我们就可以直接$2^k$枚举每一条加边是否选 ...
- 洛谷 P5019 铺设道路
题目描述 春春是一名道路工程师,负责铺设一条长度为 \(n\) 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 \(n\) 块首尾相连的区域,一开始,第 \(i\) 块区域下陷的深度 ...
- [BZOJ3206][APIO2013]道路费用(最小生成树)
3206: [Apio2013]道路费用 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 568 Solved: 266[Submit][Status ...
- [Bzoj3206][Apio2013]道路费用(kruscal)(缩点)
3206: [Apio2013]道路费用 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 536 Solved: 252[Submit][Status ...
- 题解 洛谷P5018【对称二叉树】(noip2018T4)
\(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...
- 题解 洛谷 P3396 【哈希冲突】(根号分治)
根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...
- 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)
题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...
- 题解-洛谷P4229 某位歌姬的故事
题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...
- 题解-洛谷P4724 【模板】三维凸包
洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...
随机推荐
- springboot 2.X 集成redis
在实际开发中,经常会引入redis中间件做缓存,这里介绍springboot2.X后如何配置redis 1 Maven中引入redis springboot官方通过spring-boot-autoco ...
- 谁再悄咪咪的吃掉异常,我上去就是一 JIO
又到周末了,周更选手申请出站~ 这次分享一下上个月碰到的离奇的问题.一个简单的问题,硬是因为异常被悄咪咪吃掉,过关难度直线提升,导致小黑哥排查一个晚上. 这个美好的晚上,本想着开两把 LOL 无限火力 ...
- SQL注入之报错注入常见函数
- HTTP之User-Agent大全
User-Agent 首部包含了一个特征字符串,用来让网络协议的对端来识别发起请求的用户代理软件的应用类型.操作系统.软件开发商以及版本号. 以下是一些常见的各种浏览器的User-Agent: 1) ...
- xeus-clickhouse: Jupyter 的 ClickHouse 内核
在科学计算领域,Jupyter 是一个使用非常广泛的集成开发环境,它支持多种主流的编程语言比如 Python, C++, R 或者 Julia.同时,数据科学最重要的还是数据,而 SQL 是操作数据最 ...
- Centos7-Docker1.12开启守护进程(远程调用)
本文讲述了Docker1.12.6在Linux下开启守护进程(远程调用),理论上来说其他版本也是一样的改法,博主参考很多都是巨坑,综合自己实战分享给大家,如有错误请留言; - 修改配置 1.修改 do ...
- 修改CentOS7登录欢迎界面信息
vi /etc/issue 添加自己喜欢的内容,保存即可. 特殊字符的含义: \d 本地端时间的日期: \l 显示第几个终端机接口: \m 显示硬件的等级 (i386/i486/i586/i686.. ...
- LeetCode-Queue
简单题 1. 数据流中的移动平均值 $(leetcode-346) 暂无 2. 最近的请求次数(leetcode-933) 写一个 RecentCounter 类来计算最近的请求. 它只有一个方法:p ...
- mmdetection源码剖析(1)--NMS
mmdetection源码剖析(1)--NMS 熟悉目标检测的应该都清楚NMS是什么算法,但是如果我们要与C++和cuda结合直接写成Pytorch的操作你们清楚怎么写吗?最近在看mmdetectio ...
- css3动画的性能优化_针对移动端卡顿问题
这篇文章主要讲的是怎样制作流畅动画,特别是针对移动端.在这里我首先介绍制作动画的几种方法的优缺点:接着会着重介绍用css3制作动画的注意事项. 资源网站大全 https://55wd.com 设计导航 ...