本文中使用 \(\cap\) 表示按位与,用 \(\cup\) 表示按位或

Part 1. 与/或 卷积

First. 问题引入

给定长度为 \(2^n\) 的数列 \(A,B\),求 \(C_i = \sum_{j \cup k = i} A_j \times B_k\)

显然有 \(O(4^n)\) 的暴力

Second. 变换

这一部分可以参考 快速莫比乌斯变换中的 Zeta 变换 ,即定义 \(\hat A_i\) 为序列 \(A\) 中 \(i\) 的子集和

Third. 快速变换

考虑分治

对于长度为 \(2^n\) 的待求解的 \(\hat A\),我们把它分成独立的两部分,即 \([0,2^{n-1})\) 和 \([2^{n-1},2^n)\) 两个区间分别求解

然后考虑这两个区间之间的贡献,发现只有 \([0,2^{n-1})\) 对 \([2^{n-1},2^n)\) 有贡献,于是对于 \(i \in [0,2^{n-1})\),将 \(\hat A_{i}\) 加到 \(\hat A_{i+2^{n-1}}\) 中即可

时间复杂度 \(O(n 2^n)\)

Fourth. 逆变换

我们只需要对照正变换中的操作步骤,一步一步撤销变换即可

即对于 \(i \in [0,2^{n-1})\),将 \(\hat A_{i+2^{n-1}}\) 减去 \(\hat A_{i}\) 的贡献,然后再递归地求解


当然还有另外的做法,即我们要将长度为 \(2^n\) 的 \(\hat A_i\) 在全集为 \(2^n-1\) 的情况下(即不考虑目前的长度外的子集)只包括自己的 \(A_i\),那么我们递归地求解完左右两个区间后,肯定有 \(\forall i\in [0,2^{n-1}),\hat A_{i+2^{n-1}}=\hat A_i+A_{i+2^{n-1}}\),因此减去贡献即可

in brief,可以先递归再减贡献,这样逆变换与正变换只有一个 +/- 的变化

Fifth. 推广

对于 \(\cap\) 的情况,与 \(\cup\) 十分相似,请读者尽量自己构造变换,推一下式子,可以加深理解

如果没有思路,here

Part 2. 异或 卷积

First. 问题引入

给定长度为 \(2^n\) 的数列 \(A,B\),求 \(C_i = \sum_{j \oplus k = i} A_j \times B_k\)

Second. 原理

设 \(\operatorname{popcnt}(i)\) 表示 \(i\) 在二进制下 1 的个数,则有

\[\operatorname{popcnt}(i \cap k) + \operatorname{popcnt}(j \cap k) \equiv \operatorname{popcnt}((i\oplus j)\cap k) \pmod 2
\]

证明:显然 \(k\) 为 \(0\) 的位上,\(i,j\) 的取值不影响结果,那么设 \(i'=i\cap k,j'=j\cap k\),那么问题转化为

\[\operatorname{popcnt}(i') + \operatorname{popcnt}(j') \equiv \operatorname{popcnt}(i'\oplus j') \pmod 2
\]

对于 \(i',j'\) 每一位分开讨论,原命题易证

即异或不会改变 \(1\) 的总数的奇偶性

Third. 变换

我们尝试构造一个变换

\[\hat A_i = \sum_j g(i,j) A_j
\]

例如对于 \(\cup\) 卷积 ,\(g(i,j)=[i\cup j=i]\)

这个 \(g\) 函数满足以下性质:

\[\begin{align}
& \because \hat C_i = \hat A_i \times \hat B_i \\
& \therefore \sum_{p} g(i,p)C_p = \sum_{j,k} g(i,j)\times g(i,k)\times A_j \times B_k \\
& \therefore \sum_{p} g(i,p) \sum_{j \oplus k = p} A_j \times B_k = \sum_{j,k} g(i,j)\times g(i,k)\times A_j \times B_k \\
& \therefore \sum_{j,k} g(i,j \oplus k) A_j \times B_k = \sum_{j,k} g(i,j)\times g(i,k)\times A_j \times B_k
\end{align}
\]

即我们要使得 \(g(i,j)\times g(i,k) = g(i,j \oplus k)\)

因为 \(\operatorname{popcnt}(i \cap k) + \operatorname{popcnt}(j \cap k) \equiv \operatorname{popcnt}((i\oplus j)\cap k) \pmod 2\),我们发现 \(g(i,j) = (-1)^{\operatorname{popcnt}(i \cap j)}\) 满足这个性质

\[\hat A_i = \sum_j (-1)^{\operatorname{popcnt}(i \cap j)} A_j
\]

手动推一下式子:

\[\begin{align}
\hat A_i \times \hat B_i & = \sum_j g(i,j)A_j \times \sum_k g(i,k) B_k\\
& = \sum_j (-1)^{\operatorname{popcnt}(i \cap j)} A_j \times \sum_k (-1)^{\operatorname{popcnt}(i \cap k)} B_k\\
& = \sum_{j,k} (-1)^{\operatorname{popcnt}(i \cap j) + \operatorname{popcnt}(i \cap k)} A_j \times B_k \\
& = \sum_{j,k} (-1)^{\operatorname{popcnt}(i \cap (j \oplus k))} C_{j \oplus k} \\
& = \sum_{p} (-1)^{\operatorname{popcnt}(i \cap p)} C_p \\
& = \sum_p g(i,p) C_p \\
& = \hat C_i
\end{align}
\]

Fourth. 快速变换

有点抽象,画个 \(n=3\) 的图来模拟一下

假设现在我们要考虑从 \(n=2\) 到 \(n=3\) 的变换,我们发现左边是 0??,右边是 1??,分别多出一个最高位

设原变换为 \(F_i\) ,目标变换为 \(G_i\)

  • 左 \(\to\) 左

    我们发现左边内部之间的 \(\cup\) 结果不变,因此 \(\forall i<4, G_i \gets F_i\)

  • 左 \(\to\) 右 / 右 \(\to\) 左

    我们发现 0?? \(\cup\) 1?? = 0??,因此其 1 的个数不变,因此 \(\forall i<4,G_i \gets F_{i+4}, G_{i+4} \gets F_i\)。

  • 右 \(\to\) 右

    我们发现之前是 ?? \(\cup\) ?? = ??,但是现在在前面加了一个 1,因此 \(-1\) 的指数加一,所以 \(\forall i<4,G_{i+4} \gets -F_{i+4}\)

综上,我们有 \(\forall i<4,G_i=F_i+F_{i+4}, G_{i+4}=F_i-F_{i+4}\)

generally,对于从 \(n-1\) 到 \(n\) 的变换,我们有

\[\forall i<2^{n-1}, G_i=F_i+F_{i+2^{n-1}}, G_{i+2^{n-1}}=F_i-F_{i+2^{n-1}}
\]

时间复杂度 \(O(n2^n)\)。

Fifth. 逆变换

对照上面式子易得(留给读者思考)

Part 3. 模板题

核心代码如下

void fwtOr(ll *a,int n,int type) {
for(int i=1; i<(1<<n); i<<=1)
for(int j=0; j<(1<<n); j+=(i<<1))
for(int k=0; k<i; ++k)
(a[j+k+i]+=type*a[j+k])%=P;
}
void fwtAnd(ll *a,int n,int type) {
for(int i=1; i<(1<<n); i<<=1)
for(int j=0; j<(1<<n); j+=(i<<1))
for(int k=0; k<i; ++k)
(a[j+k]+=type*a[j+k+i])%=P;
}
void fwtXor(ll *a,int n,int type) {
for(int i=1; i<(1<<n); i<<=1)
for(int j=0; j<(1<<n); j+=(i<<1))
for(int k=0; k<i; ++k) {
ll u=a[j+k],v=a[j+k+i];
a[j+k]=(u+v)%P;
a[j+k+i]=(u-v)%P;
if(type==-1) {
(a[j+k]*=Pi2)%=P;
(a[j+k+i]*=Pi2)%=P;
}
}
}

Fast Walsh Transform 学习笔记 | FWT的更多相关文章

  1. [学习笔记]FWT——快速沃尔什变换

    解决涉及子集配凑的卷积问题 一.介绍 1.基本用法 FWT快速沃尔什变换学习笔记 就是解决一类问题: $f[k]=\sum_{i\oplus j=k}a[i]*b[j]$ 基本思想和FFT类似. 首先 ...

  2. [学习笔记] $FWT$

    \(FWT\)--快速沃尔什变化学习笔记 知识点 \(FWT\)就是求两个多项式的位运算卷积.类比\(FFT\),\(FFT\)大多数求的卷积形式为\(c_n=\sum\limits_{i+j=n}a ...

  3. ios 控件代码transform学习笔记

    1.图片设置(平移,缩放,旋转) 创建一个transform属性 //按钮点击时,只能执行一次向上旋转 //派 M_PI_4 45度旋转 . CGAffineTransform transforms= ...

  4. css笔记 - transform学习笔记(二)

    transform转换 CSS transform 属于2D/3D上的转换.变形效果.他不是一个动画,他就是变形.比如正方形变平行四边形,再变圆形.都是形状变成另一个形状. 但是如果配合上transi ...

  5. 「学习笔记」Fast Fourier Transform

    前言 快速傅里叶变换(\(\text{Fast Fourier Transform,FFT}\) )是一种能在\(O(n \log n)\)的时间内完成多项式乘法的算法,在\(OI\)中的应用很多,是 ...

  6. 一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记

    一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记 曾经某个下午我以为我会了FWT,结果现在一丁点也想不起来了--看来"学"完新东西不经常做题不写博客,就白学了 = = 我没啥智 ...

  7. FWT快速沃尔什变换学习笔记

    FWT快速沃尔什变换学习笔记 1.FWT用来干啥啊 回忆一下多项式的卷积\(C_k=\sum_{i+j=k}A_i*B_j\) 我们可以用\(FFT\)来做. 甚至在一些特殊情况下,我们\(C_k=\ ...

  8. [学习笔记&教程] 信号, 集合, 多项式, 以及各种卷积性变换 (FFT,NTT,FWT,FMT)

    目录 信号, 集合, 多项式, 以及卷积性变换 卷积 卷积性变换 傅里叶变换与信号 引入: 信号分析 变换的基础: 复数 傅里叶变换 离散傅里叶变换 FFT 与多项式 \(n\) 次单位复根 消去引理 ...

  9. FWT学习笔记

    FWT学习笔记 引入 一般的多项式乘法是这样子的: \(c_i=\sum_{i,j}a_j*b_k*[j+k==i]\) 但是如果我们将这个乘法式子里面的+号变换一下变成其他的运算符号呢? \(c_i ...

  10. FWT 学习笔记

    FWT学习笔记 好久以前写的,先粘上来 定义数组 \(n=2^k\) \(A=[a_0,a_1,a_2,a_3,...,a_{n-1}]\) 令\(A_0=[a_0,a_1,a_2,...,a_{\f ...

随机推荐

  1. QT实现参数批量配置

    QT实现批量配置 需求 一些参数需要批量化配置 之前搭建的FPGA的寄存器控制模型 使用AXI-lite搭建 直接操作上位机 这里需要一个可以快速配置所有参数的上位机 需要保存文件,可以保留上一次的参 ...

  2. SDC可伸缩的高维约束基准和算法

    可伸缩的高维约束基准和算法 ​ 在过去二十年里,进化约束多目标优化受到了广泛的关注和研究,并且已经提出了一些基准测试约束多目标进化算法(CMOEAs).特别地,约束函数与目标函数值有紧密的联系,这使得 ...

  3. linux安装crontab

    1.查看是否安装 rpm -qa | grep cron #没有输出内容说明没有安装 2.安装 yum -y install vixie-cron #cron 的主程序 yum -y install ...

  4. 可变形卷积系列(二) MSRA提出升级版DCNv2,变形能力更强 | CVPR 2019

    论文提出DCNv2,不仅对DCNv1的结构进行了改进,还使用了有效的蒸馏学习策略,使得性能有很大的提升,各个方面都值得借鉴   来源:晓飞的算法工程笔记 公众号 论文: Deformable Conv ...

  5. Kingbase 函数查询返回结果集

    数据库使用过成中,时常会遇到需要返回一个结果集的情况,如何返回一个结果集,以及如何选择一个合适的方式返回结果集,是现场经常需要考虑的问题. 下面介绍KingbaseES中各种返回结果集的方式. 1.通 ...

  6. Web Audio API 第3章 音量和响度

    此章介绍的科普物理声音知识相当有用,编程的反而涉及的少 音量和响度 Loudness 响度 注:根据<韦氏词典>,响度是"一种声音的属性,它决定了所产生的听觉感觉的大小,主要取决 ...

  7. 05 CMMI(Capability Maturity Model Integration)【软件过程与管理】

    CMMI(Capability Maturity Model Integration) CMMI成熟度等级 执行的:过程不可预测,缺乏控制,反应式的 已管理的:项目描绘过程,而且经常是反应式的 已定义 ...

  8. .NET Core WebApi 多语言本地化,动态切换多语言

    .NET Core WebApi 多语言本地化,动态切换多语言 原生的.net core webapi 动态多语言本地话 具体更多详细内容,可以参考官方文档 首先看效果图 整体项目结构图 开始前需要讲 ...

  9. MySQL联结

    创建联结 mysql> SELECT vend_name,prod_name,prod_price FROM vendors,products WHERE vendors.vend_id=pro ...

  10. 简单的Git/GitHub

    什么是Git/GitHub Git 是一个开源的分布式版本控制系统,用于敏捷高效地处理任何或小或大的项目. 版本控制(Revision control)是一种在开发的过程中用于管理我们对文件.目录或工 ...