NC16615 [NOIP2008]传纸条
题目
题目描述
小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题。一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了。幸运的是,他们可以通过传纸条来进行交流。纸条要经由许多同学传到对方手里,小渊坐在矩阵的左上角,坐标(1,1),小轩坐在矩阵的右下角,坐标(m,n)。从小渊传到小轩的纸条只可以向下或者向右传递,从小轩传给小渊的纸条只可以向上或者向左传递。
在活动进行中,小渊希望给小轩传递一张纸条,同时希望小轩给他回复。班里每个同学都可以帮他们传递,但只会帮他们一次,也就是说如果此人在小渊递给小轩纸条的时候帮忙,那么在小轩递给小渊的时候就不会再帮忙。反之亦然。
还有一件事情需要注意,全班每个同学愿意帮忙的好感度有高有低(注意:小渊和小轩的好心程度没有定义,输入时用0表示),可以用一个0-100的自然数来表示,数越大表示越好心。小渊和小轩希望尽可能找好心程度高的同学来帮忙传纸条,即找到来回两条传递路径,使得这两条路径上同学的好心程度只和最大。现在,请你帮助小渊和小轩找到这样的两条路径。
输入描述
输入第一行有2个用空格隔开的整数m和n,表示班里有m行n列(1<=m,n<=50)。
接下来的m行是一个m*n的矩阵,矩阵中第i行j列的整数表示坐在第i行j列的学生的好心程度。每行的n个整数之间用空格隔开。
输出描述
输出共一行,包含一个整数,表示来回两条路上参与传递纸条的学生的好心程度之和的最大值。
示例1
输入
3 3
0 3 9
2 8 5
5 7 0
输出
34
备注
30%的数据满足:1<=m,n<=10
100%的数据满足:1<=m,n<=50
题解
知识点:线性dp。
题意等价于,找到从 \((1,1)\) 到 \((m,n)\) 的两条路径(同时存在于地图上),使得路径上的和最大,并且每次只能向下或者向右走。
最基本的方法是设 \(dp[i][j][k][l]\) 表示为A走到 \((i,j)\) ,B走到 \((k,l)\) 的最大值,但这是四次方的。
考虑设 \(dp[l][i][u]\) 表示为各自走了 \(l\) 步,A走到第 \(i\) 行,B走到第 \(u\) 行的最大值。这么做有两个原因,第一个解释可行性,第二个解释更优性,缺一不可:
- 我们并不关心两者的谁先走谁后走,只需要保证经过的不是同一个位置即可,而且步数一致,因此两者具体位置不需要独立考虑,完全可以同时走,所以可以把步数当作阶段。
- 两条路径只能往下或者往右,每步都可以通过在哪行确定在哪列,同时能够线性递推,否则就要搜索了。
于是有四种转移,向下向右,向右向下,都向下,都向右,注意边界,转移方程为:
\]
注意到步数可以滚动压缩掉,因此可以少一维。
时间复杂度 \(O(n^3)\)
空间复杂度 \(O(n^2)\)
代码
#include <bits/stdc++.h>
using namespace std;
int a[57][57], dp[57][57];
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int m, n;
cin >> m >> n;
for (int i = 1;i <= m;i++)
for (int j = 1;j <= n;j++)
cin >> a[i][j];
for (int l = 3;l < m + n;l++) {///状态是走了l步,分别在i行和u行,滚动数组优化
for (int i = m;i >= 1;i--) {
for (int u = m;u >= i + 1;u--) {
int j = l - i;
int v = l - u;
if (j <= 0 || j > n || v <= 0 || v > n) continue;
dp[i][u] = max(
{
dp[i - 1][u - 1],
dp[i - 1][u],
dp[i][u - 1],
dp[i][u]
}
) + a[i][j] + a[u][v];
}
}
}
cout << dp[m - 1][m] << '\n';
return 0;
}
NC16615 [NOIP2008]传纸条的更多相关文章
- NOIP2008 传纸条
题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是 ...
- NOIP2008传纸条[DP]
题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是 ...
- <转自原博客> NOIP2008 传纸条
小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是,他们可以 ...
- CH5103 [NOIP2008]传纸条[线性DP]
给定一个 N*M 的矩阵A,每个格子中有一个整数.现在需要找到两条从左上角 (1,1) 到右下角 (N,M) 的路径,路径上的每一步只能向右或向下走.路径经过的格子中的数会被取走.两条路径不能经过同一 ...
- NOIP2008 传纸条(DP及滚动数组优化)
传送门 这道题有好多好多种做法呀……先说一下最暴力的,O(n^4的做法) 我们相当于要找两条从左上到右下的路,使路上的数字和最大.所以其实路径从哪里开始走并不重要,我们就直接假设全部是从左上出发的好啦 ...
- 题解【AcWing275】[NOIP2008]传纸条
题面 首先有一个比较明显的状态设计:设 \(dp_{x1,y1,x2,y2}\) 表示第一条路线走到 \((x1,y1)\) ,第二条路线走到 \((x2,y2)\) 的路径上的数的和的最大值. 这个 ...
- 洛谷P1006 NOIP提高组2008 传纸条
P1006 传纸条 题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n 列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无 ...
- NOIP2008 T3 传纸条 解题报告——S.B.S.
题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是 ...
- [NOIP2008] 提高组 洛谷P1006 传纸条
题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是 ...
- 【NOIP2008】传纸条
[描述] Description 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就 ...
随机推荐
- 06-Shell内置命令
1.内置命令介绍 Shell 内置命令,就是由 Bash Shell 自身提供的命令,而不是文件系统中的可执行文件. 使用type 来确定一个命令是否是内置命令: type 命令 通常来说,内置命令会 ...
- 【Mysql系列】(一)MySQL语句执行流程
首发博客地址 首发博客地址 系列文章地址 参考文章 MySQL 逻辑架构 连接器 连接命令一般是这么写的 mysql -h$ip -P$port -u$user -p 那么 什么是连接器? MySQL ...
- [转帖]Oracle客户端与Oracle数据库兼容矩阵
https://www.cnblogs.com/kerrycode/p/17666025.html Oracle客户端与Oracle数据库之间是有兼容支持关系的,有些低版本的Oracle Client ...
- [转帖]CentOS-7-x86_64-DVD-2009 rpm包列表(centos7.9)
https://www.cnblogs.com/hiyang/p/14803391.html 文件数 4071 个,共3.8G 复制389-ds-base-1.3.10.2-6.el7.x86_64. ...
- 【转帖】nginx变量使用方法详解-8
https://www.diewufeiyang.com/post/582.html 与 $arg_XXX 类似,我们在 (二) 中提到过的内建变量 $cookie_XXX 变量也会在名为 XXX 的 ...
- [转帖]新一代垃圾回收器ZGC的探索与实践
1. 引入 1.1 GC之痛 很多低延迟高可用Java服务的系统可用性经常受GC停顿的困扰. GC停顿指垃圾回收期间STW(Stop The World),当STW时,所有应用线程停止活动,等待GC停 ...
- date的命令使用.
date命令的使用 1.直接用date命令显示日期时间 在命令行中输入date然后回车,显示结果"Wed Aug 7 08:58:07 CST 2019".这是系统根据设定的时区显 ...
- Mac 版的 Quicker CirMenu
之前在Windows上用过一款圆盘菜单工具Quicker, 感觉非常方便, 换成Macos后,一直没有找到类似应用. 最近终于发现,一款好用的快捷键收集,触发工具CirMenu. 其核心功能是可以根据 ...
- elementui-自定表头和在input中遇见的问题
第一个问题:无法关闭 弹出框 <el-table :data="tableData" style="width: 100%"> <el-tab ...
- Promise.all()方方详解
1.Promise.all()方方详解 Promise.all,只有所有的Promise成功,才能够算作成功,只要有一个失败了,就直接失败: 它包含一个参数,这个参数是指包含多个Promise的数组: ...