NC16615 [NOIP2008]传纸条
题目
题目描述
小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题。一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了。幸运的是,他们可以通过传纸条来进行交流。纸条要经由许多同学传到对方手里,小渊坐在矩阵的左上角,坐标(1,1),小轩坐在矩阵的右下角,坐标(m,n)。从小渊传到小轩的纸条只可以向下或者向右传递,从小轩传给小渊的纸条只可以向上或者向左传递。
在活动进行中,小渊希望给小轩传递一张纸条,同时希望小轩给他回复。班里每个同学都可以帮他们传递,但只会帮他们一次,也就是说如果此人在小渊递给小轩纸条的时候帮忙,那么在小轩递给小渊的时候就不会再帮忙。反之亦然。
还有一件事情需要注意,全班每个同学愿意帮忙的好感度有高有低(注意:小渊和小轩的好心程度没有定义,输入时用0表示),可以用一个0-100的自然数来表示,数越大表示越好心。小渊和小轩希望尽可能找好心程度高的同学来帮忙传纸条,即找到来回两条传递路径,使得这两条路径上同学的好心程度只和最大。现在,请你帮助小渊和小轩找到这样的两条路径。
输入描述
输入第一行有2个用空格隔开的整数m和n,表示班里有m行n列(1<=m,n<=50)。
接下来的m行是一个m*n的矩阵,矩阵中第i行j列的整数表示坐在第i行j列的学生的好心程度。每行的n个整数之间用空格隔开。
输出描述
输出共一行,包含一个整数,表示来回两条路上参与传递纸条的学生的好心程度之和的最大值。
示例1
输入
3 3
0 3 9
2 8 5
5 7 0
输出
34
备注
30%的数据满足:1<=m,n<=10
100%的数据满足:1<=m,n<=50
题解
知识点:线性dp。
题意等价于,找到从 \((1,1)\) 到 \((m,n)\) 的两条路径(同时存在于地图上),使得路径上的和最大,并且每次只能向下或者向右走。
最基本的方法是设 \(dp[i][j][k][l]\) 表示为A走到 \((i,j)\) ,B走到 \((k,l)\) 的最大值,但这是四次方的。
考虑设 \(dp[l][i][u]\) 表示为各自走了 \(l\) 步,A走到第 \(i\) 行,B走到第 \(u\) 行的最大值。这么做有两个原因,第一个解释可行性,第二个解释更优性,缺一不可:
- 我们并不关心两者的谁先走谁后走,只需要保证经过的不是同一个位置即可,而且步数一致,因此两者具体位置不需要独立考虑,完全可以同时走,所以可以把步数当作阶段。
- 两条路径只能往下或者往右,每步都可以通过在哪行确定在哪列,同时能够线性递推,否则就要搜索了。
于是有四种转移,向下向右,向右向下,都向下,都向右,注意边界,转移方程为:
\]
注意到步数可以滚动压缩掉,因此可以少一维。
时间复杂度 \(O(n^3)\)
空间复杂度 \(O(n^2)\)
代码
#include <bits/stdc++.h>
using namespace std;
int a[57][57], dp[57][57];
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int m, n;
cin >> m >> n;
for (int i = 1;i <= m;i++)
for (int j = 1;j <= n;j++)
cin >> a[i][j];
for (int l = 3;l < m + n;l++) {///状态是走了l步,分别在i行和u行,滚动数组优化
for (int i = m;i >= 1;i--) {
for (int u = m;u >= i + 1;u--) {
int j = l - i;
int v = l - u;
if (j <= 0 || j > n || v <= 0 || v > n) continue;
dp[i][u] = max(
{
dp[i - 1][u - 1],
dp[i - 1][u],
dp[i][u - 1],
dp[i][u]
}
) + a[i][j] + a[u][v];
}
}
}
cout << dp[m - 1][m] << '\n';
return 0;
}
NC16615 [NOIP2008]传纸条的更多相关文章
- NOIP2008 传纸条
题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是 ...
- NOIP2008传纸条[DP]
题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是 ...
- <转自原博客> NOIP2008 传纸条
小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是,他们可以 ...
- CH5103 [NOIP2008]传纸条[线性DP]
给定一个 N*M 的矩阵A,每个格子中有一个整数.现在需要找到两条从左上角 (1,1) 到右下角 (N,M) 的路径,路径上的每一步只能向右或向下走.路径经过的格子中的数会被取走.两条路径不能经过同一 ...
- NOIP2008 传纸条(DP及滚动数组优化)
传送门 这道题有好多好多种做法呀……先说一下最暴力的,O(n^4的做法) 我们相当于要找两条从左上到右下的路,使路上的数字和最大.所以其实路径从哪里开始走并不重要,我们就直接假设全部是从左上出发的好啦 ...
- 题解【AcWing275】[NOIP2008]传纸条
题面 首先有一个比较明显的状态设计:设 \(dp_{x1,y1,x2,y2}\) 表示第一条路线走到 \((x1,y1)\) ,第二条路线走到 \((x2,y2)\) 的路径上的数的和的最大值. 这个 ...
- 洛谷P1006 NOIP提高组2008 传纸条
P1006 传纸条 题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n 列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无 ...
- NOIP2008 T3 传纸条 解题报告——S.B.S.
题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是 ...
- [NOIP2008] 提高组 洛谷P1006 传纸条
题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是 ...
- 【NOIP2008】传纸条
[描述] Description 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就 ...
随机推荐
- SV 设计特性
过程语句块特性 ABC 过程块语句 always_comb 防止多驱动的问题:赋值块左侧的语句无法被另一个过程块赋值 if语句没有写else,sv会提示警告,sv认为是latch always不会再仿 ...
- Keep English Level-04
firm -- 坚定的,坚固的;公司 share -- n 股份,份额 executive -- 执行官 There is no chance,no density,no fate,that can ...
- [转帖]SQL Server 性能调优
性能调优2:CPU 关系型数据库严重依赖底层的硬件资源,CPU是服务器的大脑,当CPU开销很高时,内存和硬盘系统都会产生不必需要的压力.CPU的性能问题,直观来看,就是任务管理器中看到的CPU ...
- [转帖]Jmeter创建数据库(JDBC)测试-4
上一章节讲述如何建立HTTP请求测试,本章节将介绍使用MySQL数据库驱动程序进行JDBC测试.要使用该驱动程序,必须将其包含的.jar文件(例如mysql-connector-java-XXX-bi ...
- [转帖]无需 zookeeper 安装 kafka 集群 (kakfa3.0 版本)
https://xie.infoq.cn/article/7769ef4576a165f7bdf142aa3 一.kafka 集群实例角色规划 在 kafka3.0 中已经可以将 zookeeper ...
- [转帖]企业nginx简单配置
https://www.jianshu.com/p/6a3e298b31be 第五章 企业简单应用 网站访问方式 1.基于域名访问www.baidu.com 基于IP地址访问172.16.1.7配置文 ...
- js中数组reduce的使用原来这么简单
reduce 的学习方法 array.reduce(callback(prev, currentValue, index, arr), initialValue) //简写就是下面这样的 arr.re ...
- Typescript中存取器getters和setters的使用
1.存取器 存取器可以让我们可以有效的控制对,对象中的中的成员的访问. 可以通过getters和setters来进行操作 在typescript中分别对应 get 和 set 2.如何解决报错 typ ...
- 【JS 逆向百例】猿人学系列 web 比赛第二题:js 混淆 - 动态 cookie,详细剖析
逆向目标 猿人学 - 反混淆刷题平台 Web 第二题:js 混淆,动态 cookie 目标:提取全部 5 页发布日热度的值,计算所有值的加和 主页:https://match.yuanrenxue.c ...
- Gin 框架之Cookie与Session
目录 一.Cookie和Session的由来 二.Cookie简介 1. 什么是Cookie 2. Cookie规范 3. 安全性 4. Cookie 关键配置 三.Session简介 1. 什么是S ...