题目

已知数列 \(f\) 满足 \(f_{1\sim k-1}=1\) 且 \(f_n=m\),

并且知道 \(f_i=(\prod_{j=1}^kf_{i-j}b_j)\bmod{998244353}(i>k)\)

求一组可能的 \(f_k\),不可能存在合法的 \(f_k\) 输出 -1

\(k\leq 100,n\leq 10^9\)


分析

这个连乘很麻烦,如果把它转换成累加那就好了,

取对数肯定不行,因为模数是一个质数,考虑转换成原根的幂。

设 \(f_i=G^{g_i}\),众所周知该模数的一个原根为 3。

那么就转换成 \(g_{1\sim k-1}=0\),\(g_n\) 可以用 BSGS 求出来。

递推关系就转换成了喜闻乐见的矩阵乘法,可以求出 \(g_n\equiv g_k*x\pmod{998244352}\),

然后直接用扩欧算出一个合法的 \(g_k\) 即可


代码

#include <cstdio>
#include <cctype>
#include <cmath>
#include <cstring>
using namespace std;
const int mod=998244353,phi=998244352;
const int MOD=70001,N=111;
int m,A[N][N],B[N],ANS[N],C[N][N];
struct Linked_Hash{
struct node{int y,w,next;}E[MOD]; int Et,hs[MOD];
void Clear(){Et=0,memset(hs,-1,sizeof(hs));}
void Insert(int w,int x){E[++Et]=(node){x,w,hs[w%MOD]},hs[w%MOD]=Et;}
int locate(int W){
for (int i=hs[W%MOD];~i;i=E[i].next)
if (E[i].w==W) return E[i].y;
return -1;
}
}ha;
int iut(){
int ans=0; char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=ans*10+c-48,c=getchar();
return ans;
}
void Mo(int &x,int y){x=x+y>=phi?x+y-phi:x+y;}
int BSGS(int a,int b,int mod){
ha.Clear();
int ir=sqrt(mod)+1,now=1;
for (int i=0;i<ir;++i)
ha.Insert(1ll*now*b%mod,i),now=1ll*now*a%mod;
a=now,now=1;
if (!a) return !b?1:-1;
for (int i=0;i<=ir;++i){
int j=ha.locate(now);
if (j>=0&&i*ir>=j) return i*ir-j;
now=1ll*now*a%mod;
}
return -1;
}
int exgcd(int a,int b,int &x,int &y){
if (!b) {x=1,y=0; return a;}
int Gcd=exgcd(b,a%b,y,x);
y-=a/b*x;
return Gcd;
}
int ksm(int x,int y){
int ans=1;
for (;y;y>>=1,x=1ll*x*x%mod)
if (y&1) ans=1ll*ans*x%mod;
return ans;
}
int main(){
m=iut(),ANS[0]=1;
for (int i=0;i<m;++i) A[i][i+1]=1;
for (int i=0;i<m;++i) A[i][0]=iut()%phi;
for (int n=iut()-m;n;n>>=1){
if (n&1){
for (int i=0;i<m;++i){
B[i]=0;
for (int j=0;j<m;++j)
Mo(B[i],1ll*ANS[j]*A[j][i]%phi);
}
for (int i=0;i<m;++i) ANS[i]=B[i];
}
for (int i=0;i<m;++i)
for (int j=0;j<m;++j){
C[i][j]=0;
for (int k=0;k<m;++k)
Mo(C[i][j],1ll*A[i][k]*A[k][j]%phi);
}
for (int i=0;i<m;++i)
for (int j=0;j<m;++j)
A[i][j]=C[i][j];
}
int a=ANS[0],b=phi,x,y,c=BSGS(3,iut(),mod),Gcd=exgcd(a,b,x,y);
if (c%Gcd) printf("-1");
else{
x=(1ll*x*(c/Gcd)%phi+phi)%phi;
printf("%d",ksm(3,x));
}
return 0;
}

#原根,BSGS,扩欧,矩阵乘法#CF1106F Lunar New Year and a Recursive Sequence的更多相关文章

  1. CF1106F Lunar New Year and a Recursive Sequence

    题目链接:CF1106F Lunar New Year and a Recursive Sequence 大意:已知\(f_1,f_2,\cdots,f_{k-1}\)和\(b_1,b_2,\cdot ...

  2. CF1106F Lunar New Year and a Recursive Sequence 原根、矩阵快速幂、BSGS

    传送门 好久没写数论题了写一次调了1h 首先发现递推式是一个乘方的形式,线性递推和矩阵快速幂似乎都做不了,那么是否能够把乘方运算变成加法运算和乘法运算呢? 使用原根!学过\(NTT\)的都知道\(99 ...

  3. CF1106F Lunar New Year and a Recursive Sequence(矩阵快速幂+bsgs+exgcd)

    题面 传送门 前置芝士 \(BSGS\) 什么?你不会\(BSGS\)?百度啊 原根 对于素数\(p\)和自然数\(a\),如果满足\(a^x\equiv 1\pmod{p}\)的最小的\(x\)为\ ...

  4. CF1106F Lunar New Year and a Recursive Sequence——矩阵快速幂&&bsgs

    题意 设 $$f_i = \left\{\begin{matrix}1 , \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  i < k\\ ...

  5. CF1106F Lunar New Year and a Recursive Sequence 线性递推 + k次剩余

    已知\(f_i = \prod \limits_{j = 1}^k f_{i - j}^{b_j}\;mod\;998244353\),并且\(f_1, f_2, ..., f_{k - 1} = 1 ...

  6. Codeforces 1106F Lunar New Year and a Recursive Sequence | BSGS/exgcd/矩阵乘法

    我诈尸啦! 高三退役选手好不容易抛弃天利和金考卷打场CF,结果打得和shi一样--还因为queue太长而unrated了!一个学期不敲代码实在是忘干净了-- 没分该没分,考题还是要订正的 =v= 欢迎 ...

  7. Codeforces 1106F Lunar New Year and a Recursive Sequence (数学、线性代数、线性递推、数论、BSGS、扩展欧几里得算法)

    哎呀大水题..我写了一个多小时..好没救啊.. 数论板子X合一? 注意: 本文中变量名称区分大小写. 题意: 给一个\(n\)阶递推序列\(f_k=\prod^{n}_{i=1} f_{k-i}b_i ...

  8. @codeforces - 1106F@ Lunar New Year and a Recursive Sequence

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 定义递推数列 f: (1)f[1] = f[2] = ... f ...

  9. BZOJ_4128_Matrix_矩阵乘法+哈希+BSGS

    BZOJ_4128_Matrix_矩阵乘法+哈希+BSGS Description 给定矩阵A,B和模数p,求最小的x满足 A^x = B (mod p) Input 第一行两个整数n和p,表示矩阵的 ...

  10. 【bzoj4128】Matrix 矩阵乘法+Hash+BSGS

    题目描述 给定矩阵A,B和模数p,求最小的x满足 A^x = B (mod p) 输入 第一行两个整数n和p,表示矩阵的阶和模数,接下来一个n * n的矩阵A.接下来一个n * n的矩阵B 输出 输出 ...

随机推荐

  1. pikachu 水平越权,垂直越权

    水平越权 查看到其他用户的信息或者通过其他用户去编辑或修改其他用户的信息 1. 用lucy/123456登录 2. 点击查看信息 3. 使用burpsuite拦截请求 GET /vul/overper ...

  2. java怎么打印一个对象的内存地址

    在Java一般使用HashCode来代表对象的地址,但是两个相同的对象就不行了,两个相同的对象的hashcode是相同的. 如果要对比两个相同的对象的地址可以使用,System.identityHas ...

  3. 海康摄像头开发笔记(一):连接防爆摄像头、配置摄像头网段、设置rtsp码流、播放rtsp流、获取rtsp流、调优rtsp流播放延迟以及录像存储

    前言   Hik防爆摄像头录像,因为防爆摄像头会有对应的APP软件,与普通的网络摄像头和球机不一样,默认认为它不可以通过web网页配置,所以弄了个来实测确认.  经测试实际上也是可以通过web网页配置 ...

  4. 【Azure Function App】解决Function App For Container 遇见ServiceUnavailable的异常

    问题描述 在使用Terraform创建Function App 后,部署函数时候遇见 ServiceUnavailable (Bad Request -- Encountered an error ( ...

  5. 【Azure 存储服务】Azure Blob上传大文件(600MB)出现内存溢出情况(Java SDK)

    问题描述 Java 云端开发,调用 blob 上传会产生内存溢出,Java上调用的方式如下: InputStream inputStream = new BufferedInputStream(new ...

  6. Java 异常处理(1) :try-catch-finally的使用

    1 package com.bytezero.throwable; 2 3 import java.io.File; 4 import java.io.FileInputStream; 5 impor ...

  7. Kafka的Controller

    控制器组件(Controller),是 Apache Kafka 的核心组件.它的主要作用是在 Apache ZooKeeper 的帮助下管理和协调整个 Kafka 集群.集群中任意一台 Broker ...

  8. Prompt进阶系列1:LangGPT(从编程语言反思LLM的结构化可复用提示设计框架)

    Prompt进阶系列1:LangGPT(从编程语言反思LLM的结构化可复用提示设计框架) 大语言模型 (Large Language Models, LLMs) 在不同领域都表现出了优异的性能.然而, ...

  9. java线程示例

    需要开启线程 的方法继承线程类,并在run  中写逻辑 public class Ant extends Thread{ Cake cake; public Ant(String name,Cake ...

  10. Java | zuul 1.x 是如何实现请求转发的

    zuul 1.x 是如何实现请求转发的 文档写的再好,也不如源码写的好 源码地址: GitHub: https://github.com/Netflix/zuul Gitee: https://git ...