1. 背景

关于LLM复读机问题,本qiang~在网上搜刮了好几天,结果是大多数客观整理的都有些支离破碎,不够系统。

因此,本qiang~打算做一个相对系统的整理,包括LLM复读机产生的原因以及对应的解决方案。

2. LLM复读机示例

示例1:短语级别的重复

User: 你喜欢北京么?

AI: 北京是中国的首都,有很多名胜古迹,如长城,故宫,天坛等,我十分喜欢喜欢喜欢喜欢…..

示例2:句子级别的重复

User: 你喜欢北京么?

AI: 北京是中国的首都,有很多名胜古迹,如长城,故宫,天坛等,我十分热爱北京,我十分热爱北京,我十分热爱北京,…..

3. LLM复读机原因

本文主要参考了清华大学的论文《Learning to Break the Loop: Analyzing and Mitigating Repetitions for Neural Text Generation》,文中详细介绍了LLM产生复读的原因。论文的前提假设是LLM的解码均为贪心解码(greedy decoding),即每次生成的token选择词表中概率最大的token。

结论如下:

(1) LLM趋向于提高重复先前句子的概率

特别地,即使仅出现一条句子级的上下文重复,重复的概率在大多数情况下也会增加。产生这种现象的原因可能是LLM对上下文非常有信心,当先前的token共享同一个句子级的上下文时,模型会学到一条捷径,直接复制该token。

另一种解释就是Inudction Head机制,即模型会倾向于从前面已经预测word里面挑选最匹配的词。

举个例子来说明下,示例1中的第二个’喜欢’共享了同句子中的’我十分喜欢’,因此模型直接会将’喜欢’拷贝至’我十分喜欢’,进而生成’我十分喜欢喜欢’

(2) 自我强化效应(self-reinforcement effect)

重复的概率几乎随着历史重复次数的增加而单调增加,最终,重复概率稳定在某个上限值附近。

一旦生成的句子重复几次,模型将会受困于因自我强化效应引起的句子循环。

下图是论文中的图,意思是随着重复次数的增加,’general’一词的概率几乎单调增加,最终趋于稳定。其中红柱表示生成相同token的概率,蓝色表示最大概率。

(3) 初始概率较高的句子通常具有较强的自我强化效应。

4. 如何解决

目前针对LLM重复生成的问题,主要有两种策略,一种是基于训练思想,一种是基于解码策略。

4.1 基于训练策略

整体思想就是通过构造伪数据,即短语重复、句子重复等伪数据,如短语或句子重复N遍,然后设计重复惩罚项来抑制大模型生成重复句子。

论文中提出了DITTO方法即采用了此策略,DITTO全称为PseuDo RepetITion PenalizaTiOn(不得不佩服算法名称的设计精美~)。

重复惩罚项通过设计损失函数来达成,其中是惩罚因子λ,论文中提到,对于开放式生成,推荐取值为0.5,对于总结摘要类任务,取值为0.9性能更好。

代码分析:

DITTO损失函数计算的代码块位于https://github.com/Jxu-Thu/DITTO中”DITTO/fairseq/custom/repetetion_penalty_accum_loss.py”方法中,大体流程简要分析如下:

# 构造随机重复的特征

sample, P, L, N, K = self.re_orgnize_sentence(sample)

# 基于构造的重复特征进行预测

net_output = model(**sample['net_input'])

……….

## 计算损失函数

# 获取重复的基线概率信息

gt_probs, mask, valid_tokens = self.obtain_rep_baseline_prob(model.get_targets(sample, net_output), target_probs.detach(), P, L, N, K)

# 损失函数公式套用

one_minus_probs = torch.clamp((1.0 - torch.abs((target_probs - gt_probs*self.rep_reduce_gamma))), min=1e-20)

loss = -torch.log(one_minus_probs) * mask

loss = loss.sum()

此外,基于训练的策略还有其他方式,如UL(unlikelihood training)和SG(straight to gradient),论文链接可以参考第6小节。

4.2 基于解码策略

基于解码策略包含诸多方法,如beam search, random search(topK, topP), 温度, ngram等。

(1) 集束搜索(beam search)

针对贪心策略的改进,思想就是稍微放宽一些考察范围。即,在每一个时间步,不再只保留当前分数最高的1个输出(贪心策略),而是保留num_beams个,当num_beams=1时,集束搜索就退化成了贪心搜索。

(2) random search(topK, topP)

topK即从概率最高的K个token中进行筛选,即允许其他高分tokens有机会被选中

topP将可能性之和不超过特定值的top tokens列入候选名单,topP通常设置较高的值,目的是限制可能被采样的低概率token的长尾

(3) 温度T

较低的温度意味着较少的随机性,温度为0将始终产生相同的输出,较高的温度意味着更多的随机性,可以帮助模型给出更有创意的输出。

基于解码的策略墙裂建议直接查阅transformers框架中的实现方法,本qiang~切身体会,阅读源码确实能愉悦身心~

5. 总结

一句话足矣~

本文主要展开解读了LLM的复读机问题,并参考相关论文,给出基于训练策略和基于解码策略的解决手段,相信客官们清楚该问题了。

静待下一次的LLM知识点分享~

6. 参考

(1) DITTO: https://arxiv.org/pdf/2206.02369.pdf

(2) UL: https://arxiv.org/pdf/1908.04319v2.pdf

(3) SG: https://arxiv.org/pdf/2106.07207v1.pdf

(4) beam search: https://zhuanlan.zhihu.com/p/114669778

(5) random search(topK, topP), 温度: https://zhuanlan.zhihu.com/p/613428710

LLM面面观之LLM复读机问题及解决方案的更多相关文章

  1. UOJ #450「集训队作业2018」复读机

    UOJ #450 题意 有$ k$台复读机,每时每刻有且只有一台复读机进行复读 求$ n$时刻后每台复读机的复读次数都是$ d$的倍数的方案数 $ 1\leq d \leq 3,k \leq 5·10 ...

  2. UOJ#450. 【集训队作业2018】复读机 排列组合 生成函数 单位根反演

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ450.html 题解 首先有一个东西叫做“单位根反演”,它在 FFT 的时候用到过: $$\frac 1 ...

  3. 处女座与复读机 DP

    题目链接:https://ac.nowcoder.com/acm/contest/327/G 题意:给你两个字符串序列,让你根据第二个序列判断是不是 复读机,复读机会有以下特征 1.       将任 ...

  4. 【UOJ#450】【集训队作业2018】复读机(生成函数,单位根反演)

    [UOJ#450][集训队作业2018]复读机(生成函数,单位根反演) 题面 UOJ 题解 似乎是\(\mbox{Anson}\)爷的题. \(d=1\)的时候,随便怎么都行,答案就是\(k^n\). ...

  5. 牛客国庆集训派对Day4 J-寻找复读机

    链接:https://www.nowcoder.com/acm/contest/204/J 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 1048576K,其他语言20 ...

  6. [2018集训队作业][UOJ450] 复读机 [DP+泰勒展开+单位根反演]

    题面 传送门 思路 本文中所有$m$是原题目中的$k$ 首先,这个一看就是$d=1,2,3$数据分治 d=1 不说了,很简单,$m^n$ d=2 先上个$dp$试试 设$dp[i][j]$表示前$i$ ...

  7. uoj#450. 【集训队作业2018】复读机(单位根反演)

    题面 传送门 题解 我的生成函数和单位根反演的芝士都一塌糊涂啊-- \(d=1\),答案就是\(k^n\)(因为这里\(k\)个复读机互不相同,就是说有标号) \(d=2\),我们考虑复读机的生成函数 ...

  8. UOJ #450. 【集训队作业2018】复读机

    前置知识单位根反演自己去浅谈单位根反演看(此外可能需要一定的生成函数的姿势) 首先一看\(d\)这么小,那我们来分类讨论一下吧 当\(d=1\)时,显然答案就是\(k^n\) 当\(d=2\)时,如果 ...

  9. 牛客寒假算法基础集训营2 【处女座与复读机】DP最小编辑距离【模板题】

    链接:https://ac.nowcoder.com/acm/contest/327/G来源:牛客网 一天,处女座在牛客算法群里发了一句“我好强啊”,引起无数的复读,可是处女座发现复读之后变成了“处女 ...

  10. uoj #450[集训队作业2018]复读机

    传送门 \(d=1\),那么任何时刻都可以\(k\)个复读机的一种,答案为\(k^n\) \(d>1\),可以枚举某个复读机的复读次数(必须是\(d\)的倍数),然后第\(i\)个复读时间为\( ...

随机推荐

  1. Mybatis插件功能

    1 插件的作用 在Mybatis执行SQL的生命周期中,会使用插件进行埋点,主要包括Executor.StatementHandler.ParameterHandler和ResultSetHandle ...

  2. 避坑|在读取excel.xlsx文件中的内容时发现明明只有3行,但跑起来却认为有13行,导致有10行None,UI自动化测试代码空跑了10次;|UI自动化测试|数据驱动

    在读取excel.xlsx文件中的内容时发现明明只有3行,但跑起来却认为有13行,导致有10行None,UI自动化测试代码空跑了10次: 原因:excel.xlsx内容清除时用delete快捷键导致, ...

  3. Ipa打包并安装到iphone

    手动运行篇: 在真机上运行appium会进行闪退,因为我们的真机是不合法的真机,怎么样才能合法呢,要注册我们的设备才行 要对app进行打包,要先进行签名,要签名,就需要证书,证书可以自己伪造,但是这一 ...

  4. 用shell命令绘制三角形

    本文旨在通过几个经典的图案来练习shell编程,涉及知识点:for循环,大小比较,基本的数学公式计算,echo小技巧.update:2019-10-17 10:13:54 初次绘制 $ for ((l ...

  5. Remix-Ethereum IDE连接本地详解

    Remix-Ethereum IDE连接本地 ​ 由于在学习和做项目的过程中,很多人用的都是网页版的Remix,而在网页中的代码是存储在缓存中的,在使用过程中容易丢失,所以将Remix与本地文件连接起 ...

  6. git + docker + docker-compose + Jenkins+Linux 自动化构建、部署、测试过程

    Jenkins三大概念: Job:即为任务 插件:maven构建项目.git拉取代码.ssh插件 工作空间:任务的存储空间,即为git代码的存储空间 开发者在本地开发,然后提交到 Source Res ...

  7. Vue2系列(lqz)——slot插槽 (内容分发)、2 transition过渡、3 生命周期、4 swiper学习、5 自定义组件的封装、6 自定义指令、7 过滤器

    文章目录 1 slot插槽 (内容分发) 1.1 基本使用 1.2 插槽应用场景1 1.3 插槽应用场景2 1.4 具名插槽 2 transition过渡 3 生命周期 4 swiper学习 5 自定 ...

  8. 通过Lambda函数的方式获取属性名称

    前言: 最近在使用mybatis-plus框架, 常常会使用lambda的方法引用获取实体属性, 避免出现大量的魔法值. public List<User> listBySex() { L ...

  9. 使用aop(肉夹馍)为BlazorServer实现统一异常处理

    背景 用户做一个操作往往对应一个方法的执行,而方法内部会调用别的方法,内部可能又会调用别的方法,从而形成一个调用链.我们一般是在最顶层的方法去加try,而不是调用链的每一层都去加try. 在web开发 ...

  10. 【Spring】AOP实现原理

    注册AOP代理创建器 在平时开发过程中,如果想开启AOP,一般会使用@EnableAspectJAutoProxy注解,这样在启动时,它会向Spring容器注册一个代理创建器用于创建代理对象,AOP使 ...