大家好,我是蓝胖子,前段时间线上elasticsearch集群遇到多次wildcard产生的性能问题, elasticsearch wildcard 一直是容易引发elasticsearch 容易宕机的一个风险点, 但究竟它为何消耗cpu呢?又该如何理解elasticsearch profile api的返回结果呢?在探索了部分源码后,我将在这篇文章一一揭晓答案。

学完这篇文章,你可以学到如下内容:

首先,我们来看下elasticsearch的查询过程,elasticsearch 底层是使用lucece来实现数据的存储与搜索,你可以简单的理解为elasticsearch 为lucece提供了分布式存储的能力,lucece只能单机存储。

所以,理解elasticsearch查询过程分为两部分,第一是elasticsearch 如何使用lucece进行查询,第二是lucece本身是如何进行查询的。

elasticsearch查询流程

elasticsearch 的查询简单来说可以分为两部分,第一步称为query通过调用lucece查询的api获取符合条件的文档id,第二步称为fetch阶段,再通过文档id,向lucece获取原文档内容。所以宏观上看对于elasticsearch 的慢查询,要么是query阶段慢,要么是fetch阶段慢。

lucece 查询流程

对于fetch阶段没有多的可讲,即用文档id在lucece正排索引中获取原文档内容。我们着重分析下query阶段,即lucece是如何进行文档id搜索的。

在使用lucece 搜索时,通常是构造一个lucece的indexsearcher 对象,通过调用indexsearcher对象的search方法实现搜索,代码如下:

Query query = new WildcardQuery(new Term("body", "m*tal*"));
ScoreDoc[] result = searcher.search(query, 1000).scoreDocs;

socreDoc是封装了文档id和搜索得分的类型,代码如下,

public class ScoreDoc {
/** The score of this document for the query. */
public float score;
/**
* A hit document's number. * * @see StoredFields#document(int)
*/ public int doc;
/** Only set by {@link TopDocs#merge} */
public int shardIndex;

而整个search的流程可以总结为以下几个阶段,

1,重写(rewrite)query 类型。

2, 创建weight对象。

3,创建bulksocre对象。

4, 调用bulkscore.score方法,进行文档算分。

为了对下面分析的阶段更加深刻,我将search 方法代码粘贴到这下面,

public <C extends Collector, T> T search(Query query, CollectorManager<C, T> collectorManager)
throws IOException {
final C firstCollector = collectorManager.newCollector();
query = rewrite(query, firstCollector.scoreMode().needsScores());
final Weight weight = createWeight(query, firstCollector.scoreMode(), 1);
return search(weight, collectorManager, firstCollector);
}

接着,我们依次来看下这几个阶段。

rewrite query

lucece中每个查询类型都继承自org.apache.lucene.search.Query 这个抽象类,在每个查询各自的实现中可以覆盖其中的rewrite方法,来将原本的复杂查询转换为更底层的查询类型。比如wildcard query 查询类型会被rewrite 修改为MultiTermQueryConstantScoreWrapper,MultiTermQueryConstantScoreBlendedWrapper或其他查询类型,具体取决于elasticsearch 执行wildcard查询时指定的rewrite类型。

在lucece执行search方法内部执行rewrite时实际就是在调用查询类型Query的rewrite方法。

createWeight

接着lucece的search方法会调用createWeight方法产生一个weight对象,createWeight 本质上也是对Query类型的createWeight方法的调用,weight对象的作用是计算查询的权重以及构建打分score对象

elasticsearch 会为每个查询匹配的文档进行打分,分数越高的文档就会排在前面,打分时也会考虑查询条件的权重,权重越高,分数越高。

计分阶段

像前面提到的search 方法源码那样, 接着又会调用一个重载的search方法来进行search阶段的最后的步骤

  return search(weight, collectorManager, firstCollector);

在这个search方法里,lucece会判断会不会对索引的多个段segment采用多线程方式搜索。

lucece的每个段segment是可以单独被搜索的,多线程搜索的结果最后会由collecotor对象通过reduce方法进行合并。这里就不展开了,我们着重关注下,lucece是如何对每个段进行搜索的。

第一步则是由前面的weight 对象通过bulkScorer 获得一个bulkScore对象。

BulkScorer scorer = weight.bulkScorer(ctx);

bulkScore 对象顾名思义,批量打分,这个对象将会对筛选出来的文档进行批量打分。

所以紧接着第二部便是调用bulkScore的score方法进行批量打分,

scorer.score(leafCollector, ctx.reader().getLiveDocs());

批量打分的结果会被leafCollector 收集起来。

lucece 查询过程时是在哪个阶段查询匹配文档的?

在了解了lucece的整体查询过程后,你可能还对lucece是在哪个阶段进行文档筛选的感到疑惑,所以我准备单独讲下这部分。

要了解这部分主要就是要了解weight.bulkScorer和scorer.score的细节,因为查询逻辑就封装在里面。

weight.bulkScorer 创建了BulkScore,bulkScore由scorer,DocIdSetIterator,TwoPhaseIterator 3个对象构成。

scorer 对象是由weight创建的,封装了打分的规则。

DocIdSetIterator ,TwoPhaseIterator用于遍历匹配的文档,它们是scorer对象的两个属性,在遍历匹配文档时,一般它们只有一个有值。

无论是DocIdSetIterator 还是TwoPhaseIterator ,它们都拥有共同的方法迭代文档的方法,next() 用于遍历到下一个文档,advance方法用于跳过某些文档,match()方法则是专门在TwoPhaseIterator 进行二次匹配判断时用到的。

TwoPhaseIterator特别用于说明此次遍历是二次遍历,比如PhraseQuery 类型的查询,lucece 是先将满足所有给定查询的term对应的文档筛选出来,然后再进行二次遍历看文档的term相对位置是不是满足查询条件的短语位置。

所以针对 lucece 查询过程时是在哪个阶段查询匹配文档的?这个问题,要区分不同的查询类型。由于我仅仅看了部分查询源码,这里直接说下phraseQuery 类型和wildcardQuery 类型查询文档各自在什么阶段。

phraseQuery

在createWeight方法调用时,此时会进行第一次查询,通过给定的phrase短语拆分成term后,找出包含所有term的文档集合。

然后在scorer.score 方法内,会对文档集合进行二次遍历得到最终符合条件的文档集合。

wildcardQuery

由于wildcardQuery会被重写,这里我用默认的重写类MultiTermQueryConstantScoreWrapper举例,它会在weight.bulkScorer 调用时遍历 查询字段所有的term,传入提前创建好的有限状态机(有限状态机是在构建wildcardQuery对象时创建的)进行匹配,如果匹配成功,则说明文档符和查询条件。最后将文档id集合构建成一个DocIdSetIterator对象作为scorer对象的属性用于后续的遍历。

所以在scorer.score方法里遍历的对象就是在weight.bulkScorer 方法里创建的DocIdSetIterator对象。

关于wildcardQuery 有限状态机的原理将不会在这节展开,但是你需要知道的是lucece中最终是将用户输入的模式匹配字符串构建成了DFA(确定性有限状态机),它的时间复杂度是O(2^n),n输入的字符串长度,所以这也是为什么模式匹配字符串越长,wildcardQuery消耗时间越长的原因之一,且构建过程十分消耗cpu资源。

其次,构建的状态机需要和索引中该字段的所有的term去进行比较匹配,这在term数量比较大时也会出现wildCardQuery缓慢的情况。

elasticsearch profile api

profile api 实现原理

elasticsearch 提供了profile 参数配置可以在查询的时候设置为true来得到查询的分析结果,也可以在kibana的dev tools 界面直接使用profile功能。

而profile api能够实现的原理则是通过装饰器模式,通过包装lucece原有的的weight,scorer,searchindexer类型,然后在前面提到的创建scorer方法,DocIdSetIterator的advance,next,TwoPhaseIterator的match方法前后加上埋点信息统计耗时时间。

查询结果分析

最后,我们着重来看下profile的返回结果,这里我用kibana的界面返回结果举例。



profile 返回的结果列出了被重写后的查询,每个查询耗时情况,而单个的查询各个阶段的耗时情况也被列举了出来。

像wildCardQuery的查询主要耗时在build_scorer 阶段,正如前面提到的那样,wildCardQuey 查询在执行weight.bulkScorer 时会遍历查询字段所有的term 传入状态机进行匹配,这个过程是比较耗时的,生产上还是慎用,我们生产上3亿多的数据,用wildcard 查询一个匹配 *abc* 的字符串需要6,7s 。慢也是慢在build_scorer, 其次需要注意的是构建状态机的耗时没有出现在profile的返回结果里,当模式匹配字符串很长时,构建自动状态机也是很消耗cpu的,一般还是要限制模式匹配字符串的长度。

profile 结果中返回的其他阶段, 例如next_doc ,advance 则是在scorer.score 方法内部调用文档迭代器进行迭代时,调用的方法。

create_weight 是创建weight对象时需要调用的,像phraseQuery 在create_weight还进行了第一次文档查询,所以针对phraseQuery而言,可能整个过程中,最耗时的就是create_weight阶段。

score是对最后匹配的文档进行打分时需要调用的方法,match 则是二次匹配时需要调用的方法,其余3个方法耗时,compute_max_score,set_min_competive_score,shallow_advance 具体在什么场景下会被调用就没有深入研究了,等碰到耗时比较高的情况可以再去翻源码查看。

elasticsearch wildcard 慢查询原因分析(深入到源码!!!)的更多相关文章

  1. NIO 源码分析(02-1) BIO 源码分析

    目录 一.BIO 最简使用姿势 二.ServerSocket 源码分析 2.1 相关类图 2.2 主要属性 2.3 构造函数 2.4 bind 方法 2.5 accept 方法 2.6 总结 NIO ...

  2. 总结HashSet以及分析部分底层源码

    总结HashSet以及分析部分底层源码 1. HashSet继承的抽象类和实现的接口 继承的抽象类:AbstractSet 实现了Set接口 实现了Cloneable接口 实现了Serializabl ...

  3. Android5.1.1 - APK签名校验分析和修改源码绕过签名校验

    Android5.1.1 - APK签名校验分析和修改源码绕过签名校验 作者:寻禹@阿里聚安全 APK签名校验分析 找到PackageParser类,该类在文件“frameworks/base/cor ...

  4. JPEG概述和头分析(C源码)

    原创文章,转载请注明:JPEG概述和头分析(C源码)  By Lucio.Yang 部分内容来自:w285868925,JPEG压缩标准 1.JPEG概述 JPEG是一个压缩标准,又可分为标准 JPE ...

  5. Cesium专栏-填挖方分析(附源码下载)

    Cesium 是一款面向三维地球和地图的,世界级的JavaScript开源产品.它提供了基于JavaScript语言的开发包,方便用户快速搭建一款零插件的虚拟地球Web应用,并在性能,精度,渲染质量以 ...

  6. Proxy Server源码及分析(TCP Proxy源码 Socket实现端口映射)

    版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/u014530704/article/de ...

  7. 智能指针分析及auto_ptr源码

    简介 C++没有内存自动回收机制,对堆内存的管理就是简单的new和delete,每次new出来的内存都需要手动delete释放.但由于忘记.流程复杂或者异常退出等,都有可能导致没有执行delete释放 ...

  8. NIO 源码分析(05) Channel 源码分析

    目录 一.Channel 类图 二.begin 和 close 是什么 2.1 AbstractInterruptibleChannel 中的 begin 和 close 2.2 Selector 中 ...

  9. NIO 源码分析(02-2) BIO 源码分析 Socket

    目录 一.BIO 最简使用姿势 二.connect 方法 2.1 Socket.connect 方法 2.2 AbstractPlainSocketImpl.connect 方法 2.3 DualSt ...

  10. drf的基本使用、APIView源码分析和CBV源码拓展

    cbv源码拓展 扩展,如果我在Book视图类中重写dispatch方法 -可以实现,在get,post方法执行之前或者之后执行代码,完成类似装饰器的效果 def dispatch(self, requ ...

随机推荐

  1. 代码随想录算法训练营Day48 动态规划

    代码随想录算法训练营 代码随想录算法训练营Day48 动态规划|198.打家劫舍 213.打家劫舍II 337.打家劫舍III 198.打家劫舍 题目链接:198.打家劫舍 你是一个专业的小偷,计划偷 ...

  2. 【实践篇】手把手教你落地DDD

    1. 前言 常见的DDD实现架构有很多种,如经典四层架构.六边形(适配器端口)架构.整洁架构(Clean Architecture).CQRS架构等.架构无优劣高下之分,只要熟练掌握就都是合适的架构. ...

  3. 柏林噪声&幻想大陆地图生成

    序言 之前介绍过perlin噪声的实现,现在应用实践一下--程序化生成幻想大陆 这里使用的是perlin噪声倍频技术(也称分形噪声),详情传送门:柏林噪声算法 代码示例使用的是shadertoy的语法 ...

  4. 通过redis学网络(1)-用go基于epoll实现最简单网络通信框架

    本系列主要是为了对redis的网络模型进行学习,我会用golang实现一个reactor网络模型,并实现对redis协议的解析. 系列源码已经上传github https://github.com/H ...

  5. 【LeetCode滑动窗口专题#2】无重复字符的最长子串

    #1传送门 无重复字符的最长子串 给定一个字符串 s ,请你找出其中不含有重复字符的 最长子串 的长度. 示例 1: 输入: s = "abcabcbb" 输出: 3 解释: 因为 ...

  6. 「AntV」L7地理可视化:从入门到实践

    1. 前言 这是一篇由浅入深的AntV L7的学习笔记总结,记述了从了解到使用的一些过程 本文所使用的数据(包括数据处理过程)和代码均有详细描述,所有案例均可复现,甚至大部分代码可直接使用 如果喜欢分 ...

  7. CMU15445 (Fall 2020) 数据库系统 Project#2 - B+ Tree 详解(下篇)

    前言 上一篇博客中实现了单线程 B+ 树的查找.插入.删除和迭代操作,这篇博客将完成实验二的剩余任务:并发 B+ 树.实现 B+ 树并发访问最简单的方法就是在整棵树上加一把大锁,但是这样会导致过多线程 ...

  8. 尚医通-day12【token续期和就诊人管理】(内附源码)

    页面预览 就诊人管理 就诊人列表 添加就诊人 查看就诊人 ![image-20230225060710 管理员系统用户管理 前面我们完成了用户登录.用户认证与就诊人管理,现在我们需要把这些信息在我们的 ...

  9. 好的,以下是我为您拟定的自然语言处理(NLP)领域的100篇热门博客文章标题,以逻辑清晰、结构紧凑、简单易懂的

    目录 1. 引言 2. 技术原理及概念 3. 实现步骤与流程 4. 应用示例与代码实现讲解 1. 机器翻译 2. 文本分类 3. 情感分析 5. 优化与改进 6. 结论与展望 好的,以下是我为您拟定的 ...

  10. 逍遥自在学C语言 | 多级指针探秘

    前言 多级指针在C语言中是一种特殊的指针类型,它可以指向其他指针的指针. 通过多级指针,我们可以间接地访问或修改存储在内存中的数据. 在本文中,我们将讨论多级指针的概念.使用方法.使用场景以及常见错误 ...