Description

存在如下递推式:

F(n+1)=A1*F(n)+A2*F(n-1)+…+An*F(1)

F(n+2)=A1*F(n+1)+A2*F(n)+…+An*F(2)



求第K项的值对1000000007取模的结果

Input

单组测试数据

第一行输入两个整数 n , k (1<=n<=100,n < k<=10000000000)

第二行输入 n 个整数 F(1) F(2) … F(n)

第三行输入 n 个整数A1 A2 … An

Output

输出一个整数

Sample Input

2 3

1 2

3 4

Sample Output

10

【题目链接】:http://oj.acmclub.cn/problem.php?cid=1162&pid=5

【题意】

【题解】



一道裸的矩阵乘法题;

构造一个系数矩阵

0       1       0    ...    0
0 0 1 ... 0
...
0 0 0 ... 1
a[n] a[n-1] a[n-2]... a[1]

(这个矩阵每乘一次(f[1],f[2],f[3]…f[n])就会往后递推一个n)



对于k>n的询问

求这个矩阵的(k-n)次幂;

然后把最后的矩阵的最后一行依次乘上f[1],f[2]…f[n]相加;

就是f[k]了;



【Number Of WA】



0



【完整代码】

#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define ms(x,y) memset(x,y,sizeof x)
#define Open() freopen("F:\\rush.txt","r",stdin)
#define Close() ios::sync_with_stdio(0),cin.tie(0) typedef pair<int,int> pii;
typedef pair<LL,LL> pll; const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
const double pi = acos(-1.0);
const int N = 110; const int G = 100; //矩阵大小
const LL MOD = 1e9 + 7; //模数
struct MX
{
int v[G+5][G+5];
void O() { ms(v, 0); }
void E() { ms(v, 0); for (int i = 1; i <= G; ++i)v[i][i] = 1; }
void P()
{
for (int i = 1; i <= G; ++i)
{
for (int j = 1; j <= G; ++j)printf("%d ", v[i][j]); puts("");
}
}
MX operator * (const MX &b) const
{
MX c; c.O();
for (int k = 1; k <= G; ++k)
{
for (int i = 1; i <= G; ++i) if (v[i][k])
{
for (int j = 1; j <= G; ++j)
{
c.v[i][j] = (c.v[i][j] + (LL)v[i][k] * b.v[k][j]) % MOD;
}
}
}
return c;
}
MX operator + (const MX &b) const
{
MX c; c.O();
for (int i = 1; i <= G; ++i)
{
for (int j = 1; j <= G; ++j)
{
c.v[i][j] = (v[i][j] + b.v[i][j]) % MOD;
}
}
return c;
}
MX operator ^ (LL p) const
{
MX y; y.E();
MX x; memcpy(x.v, v, sizeof(v));
while (p)
{
if (p&1) y = y*x;
x = x*x;
p>>=1;
}
return y;
}
}xishu; int n;
LL k,f[N],a[N]; int main(){
//Open();
Close();
cin >> n >> k;
rep1(i,1,n) cin >> f[i];
rep1(i,1,n) cin >> a[i];
rep1(i,1,n) xishu.v[n][i] = a[n-i+1];
rep1(i,1,n-1) xishu.v[i][i+1] = 1;
if (k<=n){
cout << f[k]%MOD << endl;
return 0;
}
xishu = xishu^(k-n);
LL ans = 0;
rep1(i,1,n)
ans = (ans + xishu.v[n][i]*f[i])%MOD;
cout << ans << endl;
return 0;
}

【图灵杯 F】一道简单的递推题(矩阵快速幂,乘法模板)的更多相关文章

  1. hihoCoder 1143 : 骨牌覆盖问题·一(递推,矩阵快速幂)

    [题目链接]:click here~~ 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题: 我们有一个2xN的长条形 ...

  2. [HDOJ2604]Queuing(递推,矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2604 递推式是百度的,主要是练习一下如何使用矩阵快速幂优化. 递推式:f(n)=f(n-1)+f(n- ...

  3. HDU - 2604 Queuing(递推式+矩阵快速幂)

    Queuing Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  4. HDU5950 Recursive sequence 非线性递推式 矩阵快速幂

    题目传送门 题目描述:给出一个数列的第一项和第二项,计算第n项. 递推式是 f(n)=f(n-1)+2*f(n-2)+n^4. 由于n很大,所以肯定是矩阵快速幂的题目,但是矩阵快速幂只能解决线性的问题 ...

  5. hdu 5950 Recursive sequence 递推式 矩阵快速幂

    题目链接 题意 给定\(c_0,c_1,求c_n(c_0,c_1,n\lt 2^{31})\),递推公式为 \[c_i=c_{i-1}+2c_{i-2}+i^4\] 思路 参考 将递推式改写\[\be ...

  6. [题解][SHOI2013]超级跳马 动态规划/递推式/矩阵快速幂优化

    这道题... 让我见识了纪中的强大 这道题是来纪中第二天(7.2)做的,这么晚写题解是因为 我去学矩阵乘法啦啦啦啦啦对矩阵乘法一窍不通的童鞋戳链接啦 层层递推会TLE,正解矩阵快速幂 首先题意就是给你 ...

  7. HDU-6185-Covering(推递推式+矩阵快速幂)

    Covering Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  8. [Lonlife1031]Bob and Alice are eating food(递推,矩阵快速幂)

    题目链接:http://www.ifrog.cc/acm/problem/1031 题意:6个水果中挑出n个,使得其中2个水果个数必须是偶数,问有多少种选择方法. 设中0代表偶数,1代表奇数.分别代表 ...

  9. UESTC - 1610 递推方程+矩阵快速幂

    感觉像是HDU Keyboard的加强版,先推出3张牌时的所有组合,然后递推出n张牌 看到n=1e18时吓尿了 最后24那里还是推错了.. (5行1列 dp[1][n],dp[2][n],dp[3][ ...

随机推荐

  1. Thinking in file encoding and decoding?

    > General file encoding ways We most know, computer stores files with binary coding like abc\xe4\ ...

  2. [Codeforces 115E]Linear Kingdom Races

    题目大意: 有n块地,初始是荒地.你可以把某些荒地开垦(需要花费相应的价值\(a_i\)(正整数)),然后这些荒地就可以种田. 现在有m年,每年要在l到r区间内种田,获得p(正整数)的价值(必须保证l ...

  3. 虚拟机安装mac

    没成功,把几篇不错的文章先记录下地址 http://bbs.pcbeta.com/forum.php?mod=viewthread&tid=1437039 http://bbs.pcbeta. ...

  4. oracle间隔分区

    http://blog.csdn.net/rznice/article/details/55048876

  5. 协议栈处理中的conntrack HASH查找/Bloom过滤/CACHE查找/大包与小包/分层处理风格

    1.路由CACHE的优势与劣势 分级存储体系已经存在好多年了.其精髓在于"将最快的存储器最小化.将最慢的存储器最大化",这样的结果就使资源利用率的最大化.既提高了訪问效率,又节省了 ...

  6. Swift的构造和析构过程

    构造过程 Swift的构造过程通过定义构造器来实现. 只是与Objective-C不同的是,Swift的构造器不须要返回值,相同也不须要表明Func. 另外值得提的是,当构造器中为存储型属性赋值时.不 ...

  7. MongoDB之Java測试代码(DAO层)

    MongoInit.java是数据库初始化及连接类 MongoUtils.java是对mongodb的各种操作方法 MongoInit.java package com.wlwcloud.datate ...

  8. MAVEN创建并打包web项目

    maven项目是由一个maven project和多个maven module组成的,以下简介一下maven webapp的创建和打包,前提是你已经安装配置好maven了. 打开eclipse.依照例 ...

  9. oracle 11g rac for linux add node (oracle 11g rac 节点添加)

    说明: Adding Oracle RAC to Nodes with Oracle Clusterware Installed步骤来自ORACLE 官方文档: https://docs.oracle ...

  10. POJ 2114 点分治

    思路: 点分治 //By SiriusRen #include <cstdio> #include <cstring> #include <algorithm> u ...