GROUP BY的扩展
GROUP BY的扩展主要包括ROLLUP,CUBE,GROUPING SETS三种形式。
ROLLUP
rollup相对于简单的分组合计增加了小计和合计,解释起来会比较抽象,下面我们来看看具体事例。
例1,统计不同部门工资的总和和所有部门工资的总和。
SQL> select deptno,sum(sal) from emp group by rollup(deptno);
DEPTNO SUM(SAL)
---------- ----------
10 8750
20 10875
30 9400
29025
例2,该例中先对deptno进行分组,再对job进行分组
SQL> select deptno,job,sum(sal) from emp group by rollup(deptno,job);
DEPTNO JOB SUM(SAL)
---------- --------- ----------
10 CLERK 1300 --10号部门中JOB为CLERK的工资的总和
10 MANAGER 2450
10 PRESIDENT 5000
10 8750 --10号所有工种工资的总和
20 CLERK 1900
20 ANALYST 6000
20 MANAGER 2975
20 10875
30 CLERK 950
30 MANAGER 2850
30 SALESMAN 5600
30 9400
29025 --所有部门,所有工种工资的总和
13 rows selected.
如果要用普通的分组函数实现,可用UNION ALL语句:
--实现单个部门,单个工种的工资的总和
select deptno,job,sum(sal) from emp group by deptno,job
union all
--实现单个部门工资的总和
select deptno,null,sum(sal) from emp group by deptno
union all
--实现所有部门工资的总和
select null,null,sum(sal) from emp
order by 1,2
下面我们分别来看看两者的执行计划及统计信息,
ROLLUP语句:
Execution Plan
-----------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
-----------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 11 | 132 | 3 (34)| 00:00:01 |
| 1 | SORT GROUP BY ROLLUP| | 11 | 132 | 3 (34)| 00:00:01 |
| 2 | TABLE ACCESS FULL | EMP | 14 | 168 | 2 (0)| 00:00:01 |
-----------------------------------------------------------------------------
Statistics
----------------------------------------------------------
0 recursive calls
0 db block gets
2 consistent gets
0 physical reads
0 redo size
895 bytes sent via SQL*Net to client
519 bytes received via SQL*Net from client
2 SQL*Net roundtrips to/from client
1 sorts (memory)
0 sorts (disk)
13 rows processed
UNION ALL语句:
Execution Plan
-----------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
-----------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 15 | 150 | 9 (34)| 00:00:01 |
| 1 | SORT ORDER BY | | 15 | 150 | 8 (75)| 00:00:01 |
| 2 | UNION-ALL | | | | | |
| 3 | HASH GROUP BY | | 11 | 132 | 3 (34)| 00:00:01 |
| 4 | TABLE ACCESS FULL| EMP | 14 | 168 | 2 (0)| 00:00:01 |
| 5 | HASH GROUP BY | | 3 | 15 | 3 (34)| 00:00:01 |
| 6 | TABLE ACCESS FULL| EMP | 14 | 70 | 2 (0)| 00:00:01 |
| 7 | SORT AGGREGATE | | 1 | 3 | | |
| 8 | TABLE ACCESS FULL| EMP | 14 | 42 | 2 (0)| 00:00:01 |
-----------------------------------------------------------------------------
Statistics
----------------------------------------------------------
0 recursive calls
0 db block gets
6 consistent gets
0 physical reads
0 redo size
895 bytes sent via SQL*Net to client
519 bytes received via SQL*Net from client
2 SQL*Net roundtrips to/from client
1 sorts (memory)
0 sorts (disk)
13 rows processed
不难看出,相同的功能实现,ROLLUP相对于UNION ALL效率有了极大的提升。
CUBE
cube相对于rollup,结果输出更加详细。
例1,在本例中还不是很明显。
SQL> select deptno,sum(sal) from emp group by cube(deptno);
DEPTNO SUM(SAL)
---------- ----------
29025
10 8750
20 10875
30 9400
例2,相对于rollup,cube还对工种这一列进行了专门的汇总。
SQL> select deptno,job,sum(sal) from emp group by cube(deptno,job);
DEPTNO JOB SUM(SAL)
---------- --------- ----------
29025
CLERK 4150
ANALYST 6000
MANAGER 8275
SALESMAN 5600
PRESIDENT 5000
10 8750
10 CLERK 1300
10 MANAGER 2450
10 PRESIDENT 5000
20 10875
20 CLERK 1900
20 ANALYST 6000
20 MANAGER 2975
30 9400
30 CLERK 950
30 MANAGER 2850
30 SALESMAN 5600
18 rows selected.
GROUPING SETS
GROUPING SETS相对于ROLLUP和CUBE,结果是分类统计的,可读性更好一些。
例1:
SQL> select deptno,job,to_char(hiredate,'yyyy')hireyear,sum(sal) from emp group by grouping sets(deptno,job,to_char(hiredate,'yyyy'));
DEPTNO JOB HIRE SUM(SAL)
---------- --------- ---- ----------
CLERK 4150
SALESMAN 5600
PRESIDENT 5000
MANAGER 8275
ANALYST 6000
30 9400
20 10875
10 8750
1987 4100
1980 800
1982 1300
1981 22825
例2:
SQL> select deptno,job,sum(sal) from emp group by grouping sets(deptno,job);
DEPTNO JOB SUM(SAL)
---------- --------- ----------
CLERK 4150
SALESMAN 5600
PRESIDENT 5000
MANAGER 8275
ANALYST 6000
30 9400
20 10875
10 8750
8 rows selected.
对于该例,如何用UNION ALL实现呢?
select null deptno,job,sum(sal) from emp group by job
union all
select deptno,null,sum(sal) from emp group by deptno;
两者的执行计划及统计信息分别如下:
GROUPING SETS:
Execution Plan
--------------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--------------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 11 | 352 | 10 (20)| 00:00:01 |
| 1 | TEMP TABLE TRANSFORMATION | | | | | |
| 2 | LOAD AS SELECT | SYS_TEMP_0FD9D6795_E71F79 | | | | |
| 3 | TABLE ACCESS FULL | EMP | 14 | 168 | 2 (0)| 00:00:01 |
| 4 | LOAD AS SELECT | SYS_TEMP_0FD9D6796_E71F79 | | | | |
| 5 | HASH GROUP BY | | 1 | 19 | 3 (34)| 00:00:01 |
| 6 | TABLE ACCESS FULL | SYS_TEMP_0FD9D6795_E71F79 | 1 | 19 | 2 (0)| 00:00:01 |
| 7 | LOAD AS SELECT | SYS_TEMP_0FD9D6796_E71F79 | | | | |
| 8 | HASH GROUP BY | | 1 | 26 | 3 (34)| 00:00:01 |
| 9 | TABLE ACCESS FULL | SYS_TEMP_0FD9D6795_E71F79 | 1 | 26 | 2 (0)| 00:00:01 |
| 10 | VIEW | | 1 | 32 | 2 (0)| 00:00:01 |
| 11 | TABLE ACCESS FULL | SYS_TEMP_0FD9D6796_E71F79 | 1 | 32 | 2 (0)| 00:00:01 |
--------------------------------------------------------------------------------------------------------
Statistics
----------------------------------------------------------
4 recursive calls
24 db block gets
17 consistent gets
3 physical reads
1596 redo size
819 bytes sent via SQL*Net to client
519 bytes received via SQL*Net from client
2 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
8 rows processed
UNION ALL:
----------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
----------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 8 | 65 | 6 (67)| 00:00:01 |
| 1 | UNION-ALL | | | | | |
| 2 | HASH GROUP BY | | 5 | 50 | 3 (34)| 00:00:01 |
| 3 | TABLE ACCESS FULL| EMP | 14 | 140 | 2 (0)| 00:00:01 |
| 4 | HASH GROUP BY | | 3 | 15 | 3 (34)| 00:00:01 |
| 5 | TABLE ACCESS FULL| EMP | 14 | 70 | 2 (0)| 00:00:01 |
---------------------------------------------------------------------------- Statistics
----------------------------------------------------------
0 recursive calls
0 db block gets
4 consistent gets
0 physical reads
0 redo size
819 bytes sent via SQL*Net to client
519 bytes received via SQL*Net from client
2 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
8 rows processed
和rollup不同的是,grouping sets的效率竟然比同等功能的union all语句低,这实现有点出乎意料。看来,也不可盲目应用Oracle提供的方案,至少,在本例中是如此。
GROUP BY的扩展的更多相关文章
- 报表开发之扩展GROUP BY
在实际运用中.比方在数据仓库中,常常须要对数据进行多维分析.不仅须要标准分组的结果(相当于 GROUP BY),还须要不同维度的小计(简单 GROUP BY 中取部分列分组)和合计(不分组).从而 提 ...
- mysql5.5手册读书日记(3)
<?php /* MySQL_5.5中文参考手册 587开始 与GROUP BY子句同时使用的函数和修改程序 12.10.1. GROUP BY(聚合)函数 12.10.2. GROUP BY修 ...
- oracle 高级分组
oracle 高级分组 博客分类: 数据库基础 oraclesql 10.高级分组 本章目标: 对于增强的group by需要掌握: 1.使用rollup(也就是roll up累计的意思)操作产生s ...
- spark2.2 DataFrame的一些算子操作
Spark Session中的DataFrame类似于一张关系型数据表.在关系型数据库中对单表或进行的查询操作,在DataFrame中都可以通过调用其API接口来实现.可以参考,Scala提供的Dat ...
- Spark-SQL之DataFrame操作大全
Spark SQL中的DataFrame类似于一张关系型数据表.在关系型数据库中对单表或进行的查询操作,在DataFrame中都可以通过调用其API接口来实现.可以参考,Scala提供的DataFra ...
- python新手菜鸟之基础篇
s=0 for i in range(1,101): s += i else: print(s) def main(n): '''打印菱形图形''' for i in range(n): print( ...
- Spark-SQL之DataFrame操作
Spark SQL中的DataFrame类似于一张关系型数据表.在关系型数据库中对单表或进行的查询操作,在DataFrame中都可以通过调用其API接口来实现.可以参考,Scala提供的DataFra ...
- Linux系统编程【转】
转自:https://blog.csdn.net/majiakun1/article/details/8558308 一.Linux系统编程概论 1.1 系统编程基石 syscall: libc:标准 ...
- [转]详解Oracle高级分组函数(ROLLUP, CUBE, GROUPING SETS)
原文地址:http://blog.csdn.net/u014558001/article/details/42387929 本文主要讲解 ROLLUP, CUBE, GROUPING SETS的主要用 ...
随机推荐
- php随机ip
$ip_long = array( array('607649792', '608174079'), //36.56.0.0-36.63.255.255 array('1038614528', '10 ...
- Javascript初学篇章_6(BOM)
BOM 浏览器对象模型 BOM (浏览器对象模型),它提供了与浏览器窗口进行交互的对象 一.window对象 Window对 象表示整个浏览器窗口. 1.系统消息框 alert() alert('he ...
- MySql怎样去掉某个字段最后的逗号或最后的字
update 表 set 字段=left(字段,char_length(字段)-1) where right(字段,1)=',';
- input jquery 操作
本文章主要为了总结开发常用的input等常见html的jquery操作,不是为了展示自己多么菜,只为了积累知识,勿喷!!!不断更新中 $(function () { $("input[nam ...
- 判断是否为mac电脑 、还是windows操作系统
/** * 是否为mac系统(包含iphone手机) * */ var isMac = function() { return /macintosh|mac os x/i.test(navigator ...
- 【noip】noip201503求和(市赛后公布)
3. 求和 难度级别:B: 运行时间限制:1000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 题目描述 一条狭长的纸带被均匀划分出了n个格子,格子编号从1到n.每个格子 ...
- 【一】Ubuntu14.04+Jekyll+Github Pages搭建静态博客
本系列有五篇:分别是 [一]Ubuntu14.04+Jekyll+Github Pages搭建静态博客:主要是安装方面 [二]jekyll 的使用 :主要是jekyll的配置 [三]Markdown+ ...
- 关于c++的 vector 容器的使用及创建方法
1.vector向量容器的使用,vector具有自动管理的功能,可以进行元素的查找删除 创建方法: (1) vector<int > v; 创建了一个v的容器,没指定容量: (2) v ...
- 广州PostgreSQL用户会技术交流会小记 2015-9-19
广州PostgreSQL用户会技术交流会小记 2015-9-19 今天去了广州PostgreSQL用户会组织的技术交流会 分别有两个session 第一个讲师介绍了他公司使用PostgreSQL-X2 ...
- Android安全开发之安全使用HTTPS
Android安全开发之安全使用HTTPS 1.HTTPS简介 阿里聚安全的应用漏洞扫描器中有证书弱校验.主机名弱校验.webview未校验证书的检测项,这些检测项是针对APP采用HTTPS通信时容易 ...