Transfer water

Time Limit: 5000/3000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others)

Total Submission(s): 4216    Accepted Submission(s): 1499

Problem Description
XiaoA lives in a village. Last year flood rained the village. So they decide to move the whole village to the mountain nearby this year. There is no spring in the mountain, so each household could only dig a well or build a water line from other household.
If the household decide to dig a well, the money for the well is the height of their house multiplies X dollar per meter. If the household decide to build a water line from other household, and if the height of which supply water is not lower than the one
which get water, the money of one water line is the Manhattan distance of the two households multiplies Y dollar per meter. Or if the height of which supply water is lower than the one which get water, a water pump is needed except the water line. Z dollar
should be paid for one water pump. In addition,therelation of the households must be considered. Some households may do not allow some other households build a water line from there house. Now given the 3‐dimensional position (a, b, c) of every household the
c of which means height, can you calculate the minimal money the whole village need so that every household has water, or tell the leader if it can’t be done.
 
Input
Multiple cases. 

First line of each case contains 4 integers n (1<=n<=1000), the number of the households, X (1<=X<=1000), Y (1<=Y<=1000), Z (1<=Z<=1000). 

Each of the next n lines contains 3 integers a, b, c means the position of the i‐th households, none of them will exceeded 1000. 

Then next n lines describe the relation between the households. The n+i+1‐th line describes the relation of the i‐th household. The line will begin with an integer k, and the next k integers are the household numbers that can build a water line from the i‐th
household. 

If n=X=Y=Z=0, the input ends, and no output for that. 
 
Output
One integer in one line for each case, the minimal money the whole village need so that every household has water. If the plan does not exist, print “poor XiaoA” in one line. 
 
Sample Input
2 10 20 30
1 3 2
2 4 1
1 2
2 1 2
0 0 0 0
 
Sample Output
30
Hint
In 3‐dimensional space Manhattan distance of point A (x1, y1, z1) and B(x2, y2, z2) is |x2‐x1|+|y2‐y1|+|z2‐z1|.
 
Source
 
Recommend
lcy   |   We have carefully selected several similar problems for you:  4007 4004 4006 4001 

pid=4008" target="_blank" style="color:rgb(26,92,200); text-decoration:none">4008 

 

/* ***********************************************
Author :CKboss
Created Time :2015年07月06日 星期一 09时23分30秒
File Name :HDOJ4009.cpp
************************************************ */ #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstdlib>
#include <vector>
#include <queue>
#include <set>
#include <map> using namespace std; const int maxn=1200;
const int INF=0x3f3f3f3f; int n,X,Y,Z; struct POS
{
int a,b,c;
}pos[maxn]; struct Edge
{
int u,v,cost;
}edge[maxn*maxn]; int en;
int pre[maxn],id[maxn],vis[maxn],in[maxn]; void init() { en=0; } int zhuliu(int root,int n,int m,Edge edge[])
{
int res=0,v;
while(true)
{
for(int i=0;i<n;i++) in[i]=INF;
for(int i=0;i<m;i++)
{
if(edge[i].u!=edge[i].v&&edge[i].cost<in[edge[i].v])
{
pre[edge[i].v]=edge[i].u;
in[edge[i].v]=edge[i].cost;
}
}
for(int i=0;i<n;i++)
{
if(i!=root&&in[i]==INF) return -1;
}
int tn=0;
memset(id,-1,sizeof(id));
memset(vis,-1,sizeof(vis));
in[root]=0;
for(int i=0;i<n;i++)
{
res+=in[i];
v=i;
while(vis[v]!=i&&id[v]==-1&&v!=root)
{
vis[v]=i; v=pre[v];
}
if(v!=root&&id[v]==-1)
{
for(int u=pre[v];u!=v;u=pre[u])
id[u]=tn;
id[v]=tn++;
}
}
if(tn==0) break;
for(int i=0;i<n;i++)
if(id[i]==-1) id[i]=tn++;
for(int i=0;i<m;)
{
v=edge[i].v;
edge[i].u=id[edge[i].u];
edge[i].v=id[edge[i].v];
if(edge[i].u!=edge[i].v)
edge[i++].cost-=in[v];
else
swap(edge[i],edge[--m]);
}
n=tn;
root=id[root];
}
return res;
} int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout); while(scanf("%d%d%d%d",&n,&X,&Y,&Z)!=EOF)
{
if(n==0&&X==0&&Y==0&&Z==0) break; init(); for(int i=1,x,y,z;i<=n;i++)
{
scanf("%d%d%d",&x,&y,&z);
pos[i]=(POS){x,y,z};
} /// root 0 is water
for(int i=1;i<=n;i++)
{
int hight = pos[i].c;
edge[en++]=(Edge){0,i,hight*X};
} for(int i=1,m;i<=n;i++)
{
int to,from=i;
scanf("%d",&m);
for(int j=0;j<m;j++)
{
scanf("%d",&to);
if(from==to) continue; int dist = abs(pos[to].a-pos[from].a)+abs(pos[to].b-pos[from].b)+abs(pos[to].c-pos[from].c);
int h_to = pos[to].c;
int h_from = pos[from].c; if(h_from>=h_to)
{
edge[en++]=(Edge){from,to,dist*Y};
}
else
{
edge[en++]=(Edge){from,to,dist*Y+Z};
}
}
} /// zhuliu
int lens = zhuliu(0,n+1,en,edge);
if(lens==-1) puts("poor XiaoA");
else printf("%d\n",lens);
} return 0;
}

HDOJ 4009 Transfer water 最小树形图的更多相关文章

  1. HDU 4009 Transfer water 最小树形图

    分析:建一个远点,往每个点连建井的价值(单向边),其它输水线按照题意建单向边 然后以源点为根的权值最小的有向树就是答案,套最小树形图模板 #include <iostream> #incl ...

  2. HDU4009 Transfer water —— 最小树形图 + 不定根 + 超级点

    题目链接:https://vjudge.net/problem/HDU-4009 Transfer water Time Limit: 5000/3000 MS (Java/Others)    Me ...

  3. hdu4009 Transfer water 最小树形图

    每一户人家水的来源有两种打井和从别家接水,每户人家都可能向外输送水. 打井和接水两种的付出代价都接边.设一个超级源点,每家每户打井的代价就是从该点(0)到该户人家(1~n)的边的权值.接水有两种可能, ...

  4. HDU 4009——Transfer water——————【最小树形图、不定根】

    Transfer water Time Limit:3000MS     Memory Limit:65768KB     64bit IO Format:%I64d & %I64u Subm ...

  5. HDU 4009 Transfer water(最小树形图)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4009 题意:给出一个村庄(x,y,z).每个村庄可以挖井或者修建水渠从其他村庄得到水.挖井有一个代价, ...

  6. HDU - 4009 - Transfer water 朱刘算法 +建立虚拟节点

    HDU - 4009:http://acm.hdu.edu.cn/showproblem.php?pid=4009 题意: 有n户人家住在山上,现在每户人家(x,y,z)都要解决供水的问题,他可以自己 ...

  7. hdu 4009 Transfer water(最小型树图)

    Transfer water Time Limit: 5000/3000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others)To ...

  8. hdu 2121 , hdu 4009 无定根最小树形图

    hdu 2121 题目:给出m条有向路,根不确定,求一棵最小的有向生成树. 分析:增加一个虚拟节点,连向n个节点,费用为inf(至少比sigma(cost_edge)大).以该虚拟节点为根求一遍最小树 ...

  9. HDU 4009 Transfer water

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4009 题意:给出一个村庄(x,y,z).每个村庄可以挖井或者修建水渠从其他村庄得到水.挖井有一个代价, ...

随机推荐

  1. vue父子组件通信传值

    父组件 -> 子组件 通过props来进行通信 父组件代码: <Children :dataName = "dataContent" /> //dataName: ...

  2. 紫书 例题11-9 UVa 1658 (拆点+最小费用流)

    这道题要求每个节点只能经过一次,也就是结点容量为1, 要拆点, 拆成两个点, 中间连一条弧容量为1, 费用为0. 因为拆成两个点, 所以要经过原图中的这个节点就要经过拆成的这两个点, 又因为这两个点的 ...

  3. [Luogu]P3338 [ZJOI2014]力(FFT)

    题目描述 给出\(n\)个数\(q_i\),给出\(F_j\)的定义如下: \(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j}\fr ...

  4. python字典对象的update()方法

    使用字典对象的update()方法,如A.update(B),将B字典的键值对一次性全部添加到A字典对象,当A字典为空时,相当于深复制,非常方便.如果两个字典中存在相同的键,则进行值的更新. A={} ...

  5. 【codeforces 417D】Cunning Gena

    [题目链接]:http://codeforces.com/problemset/problem/417/D [题意] 有n个人共同完成m个任务; 每个人有可以完成的任务集(不一定所有任务都能完成); ...

  6. JavaScript编写Web脚本最佳实现

    最近在看JavaScript DOM 编程艺术,总结一下JavaScript编写Web脚本的规范与实现,对于实现有以下几点要求: 平稳退化:确保网页在没有JavaScript下也能正常运行 分离Jav ...

  7. [Typescript] Promise based delay function using async / await

    Learn how to write a promise based delay function and then use it in async await to see how much it ...

  8. 多线程02---pThread简单介绍

    1.简单介绍 pthread 是属于 POSIX 多线程开发框架. 它是c语言提供的一个跨平台的多线程解决方式.因为其在iOS编程中,操作比較麻烦.一般不用,这里介绍只作为了解. 2.pthread的 ...

  9. Anaconda升级

    Anaconda是可以进行升级的, 这样就省的重装一遍python全家桶了, 比如:   conda update conda conda install anaconda=2018.12   就可以 ...

  10. json数据字典,以及数据在下拉框中显示

    建立person_vocation.json数据字典文件,内容: [ {"id":1,"disabled":false,"selected" ...