Unpaired/Partially/Unsupervised Image Captioning
这篇涉及到以下三篇论文:
Unpaired Image Captioning by Language Pivoting (ECCV 2018)
Show, Tell and Discriminate: Image Captioning by Self-retrieval with Partially Labeled Data (ECCV 2018)
Unsupervised Image Caption (CVPR 2019)
1. Unpaired Image Captioning by Language Pivoting (ECCV 2018)
Abstract
作者提出了一种通过语言枢轴(language pivoting)的方法来解决没有成对的图片和描述的image caption问题(unpaired image captioning problem)。
Our method can effectively capture the characteristics of an image captioner from the pivot language(Chinese) and align it to the target language (English) using another pivot-target (Chinese-English) sentence parallel corpus.
Introduction
由于encoder-decoder结构需要大量的image-caption pairs来训练,通常这样的大规模标记数据是难以获得的,研究人员开始思考通过非成对的数据或者是用半监督的方法来利用其他领域成对的标记数据来实现无监督学习的目的。在本文中,作者希望通过使用源语言——中文作为枢轴语言,来消除输入图片和目标语言——英文描述之间的间隔,这需要有图片——中文描述以及中文——英文两个成对的数据集,从而达到不需要有图片——英文描述成对数据集来实现图片到英文描述生成的目的。
作者说这种思想来源于机器翻译领域的相关研究,使用这种策略的机器翻译方法通常分为两步,首先将源语言翻译成枢轴语言,然后将枢轴语言翻译成目标语言。但是image caption与机器翻译又有很多不同的地方:1.image-Chinese caption和Chinese-English中句子的风格和词汇分布有很大区别;2.source-to-pivot转换的错误会传递到pivot-to-target
Use AIC-ICC and AIC-MT as the training datasets and two datasets (MSCOCO and Flickr30K) as the validation datasets
i: source image, x: pivot language sentence, y: target language, y_hat: ground truth captions in target language(对于这里的y_hat,是从MSCOCO训练集里面随机抽取的描述性语句(captions),用来训练下autoencoder)
这篇文章的思想比较容易理解,难点是把Image-to-Pivot和Pivot-to-Target联系起来,克服两个数据集语言风格和词汇分布不一致这两个问题。
2. Show, Tell and Discriminate: Image Captioning by Self-retrieval with Partially Labeled Data (ECCV 2018)
作者在这篇文章中指出,目前已有的caption模型倾向于复制训练集中的句子或短语,生成的描述通常是泛化和模板化的,缺乏生成区分性描述的能力。
基于GAN的caption模型可以提升句子的多样性,但在标准的评价指标上会有比较差的表现。
作者提出在Captioning Module上结合一个Self-retrieval Module,来达到generate discriminative captions的目的。
3. Unsupervised Image Caption (CVPR 2019)
这是一篇真正的无监督方法来做Image Caption的文章,不 rely on any labeled image sentence pairs
与Unsupervised Machine Translation相比,Unsupervised Image Caption任务更具挑战是因为图像和文本是两个不同的模态,有很大的差别。
模型由an image encoder, a sentence generator,a sentence discriminator组成。
Encoder:
普通的image encoder即可,作者采用的是Inception-V4
Generator:
由LSTM组成的decoder
Discriminator:
由LSTM来实现,用来distinguish whether a partial sentence is a real sentence from the corpus or is generated by the model.
Training:
由于do not have any paired image-sentence,就不能用有监督的方式来训练模型了,于是作者设计了三种目标函数来实现Unsupervised Image Captioning
Adversarial Caption Generation:
Visual Concept Distillation:
Bi-directional Image-Sentence Reconstruction:
Image Reconstruction: reconstruct the image features instead of the full image
Sentence Reconstruction: the discriminator can encode one sentence and project it into the common latent space, which can be viewed as one image representation related to the given sentence. The generator can reconstruct the sentence based on the obtained representation.
Integration:Generator:
Discriminator:
Initialization
It challenging to adequately train our image captioning model from scratch with the given unpaired data, need an initialization pipeline to pre-train the generator and discriminator.
For generator:
Firstly, build a concept dictionary consisting of the object classes in the OpenImages dataset
Second, train a concept-to-sentence(con2sen) model using the sentence corpus only
Third, detect the visual concepts in each image using the existing visual concept detector. Use the detected concepts and the concept-to-sentence model to generate a pseudo caption for each image
Fourth, train the generator with the pseudo image-caption pairs
For discriminator, initialized by training an adversarial sentence generation model on the sentence corpus.
Unpaired/Partially/Unsupervised Image Captioning的更多相关文章
- Image Captioning代码复现
Image caption generation: https://github.com/eladhoffer/captionGen Simple encoder-decoder image capt ...
- ( 转) Awesome Image Captioning
Awesome Image Captioning 2018-12-03 19:19:56 From: https://github.com/zhjohnchan/awesome-image-capti ...
- 《Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks》论文笔记
Code Address:https://github.com/junyanz/CycleGAN. Abstract 引出Image Translating的概念(greyscale to color ...
- Image Captioning 经典论文合辑
Image Caption: Automatically describing the content of an image domain:CV+NLP Category:(by myself, y ...
- Video Captioning 综述
1.Unsupervised learning of video representations using LSTMs 方法:从先前的帧编码预测未来帧序列 相似于Sequence to sequen ...
- paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning
来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...
- Machine Learning Algorithms Study Notes(4)—无监督学习(unsupervised learning)
1 Unsupervised Learning 1.1 k-means clustering algorithm 1.1.1 算法思想 1.1.2 k-means的不足之处 1 ...
- 论文笔记之:Deep Recurrent Q-Learning for Partially Observable MDPs
Deep Recurrent Q-Learning for Partially Observable MDPs 摘要:DQN 的两个缺陷,分别是:limited memory 和 rely on b ...
- Unsupervised Classification - Sprawl Classification Algorithm
Idea Points (data) in same cluster are near each others, or are connected by each others. So: For a ...
随机推荐
- spring boot中servlet启动原理
启动过程及原理 1 spring boot 应用启动运行run方法 StopWatch stopWatch = new StopWatch(); stopWatch.start(); Configur ...
- Linux开发环境搭建与使用系列教程
00.Linux开发环境搭建与使用1——Linux简史 01.Linux开发环境搭建与使用2——Linux系统(ubuntu)安装方案 02.Linux开发环境搭建与使用3——通过虚拟机安装系统(ub ...
- 深入理解JVM:垃圾收集器与内存分配策略
堆里面存放着Java世界差点儿全部的对象实例,垃圾收集器在对堆进行回收前.第一件事情就是要确定这些对象之中哪些还存活,哪些已经死去.推断对象的生命周期是否结束有下面几种方法 引用计数法 详细操作是给对 ...
- .net core 下使用StackExchange的Redis库访问超时解决
原文:.net core 下使用StackExchange的Redis库访问超时解决 目录 问题:并发稍微多的情况下Redis偶尔返回超时 给出了参考网址? 结论 小备注 引用链接 问题:并发稍微多的 ...
- Centos root权限的变化
方法一:更改 /etc/sudoers 文件, 找到以下一行,把前面的凝视(#)去掉 ## Allows people in group wheel to run all commands %whee ...
- 【第400篇题解纪念2016年10月28日】【28.10%】【codeforces 617E】XOR and Favorite Number
time limit per test4 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
- Gradle构建脚本基础
Gradle构建脚本,内部是基于 Groovy 的 DSL(领域特点语言),而Maven是基于XML的,Groovy相比XML更加简洁.灵活和强大. Groovy 因为给 Java 开发人员提供了最大 ...
- webpack单独构建scss文件与.vue组件里构建scss的一个坑
在入口main.js里构建scss是通过引入模块的方式 import './assets/_reset.scss'; import './assets/_flex.scss'; import './a ...
- 使用readLine()方法遇到的坑
程序很简单,客户段从控制台读取用户输入,然后发送至服务器端,主要代码如下 服务端代码: 客户端代码: 结果运行的时候,当开启服务端和客户端后,在客户端的控制台 键盘输入 内容,服务端却没有显示内容 原 ...
- C# 调用PowerShell方法
PowerShell应为编写和运行都很方便,所以为了重复利用,经常写了一些小方法或者PS代码片段.使用的时候可能会很难找到自己想要的那个方法,如果要是有一个界面把这些代码管理起来并且调用,那就很爽了 ...