生成ID之雪花算法
package com.shopping.test;
/**
* SnowFlake的结构如下(每部分用-分开):<br>
* 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000 <br>
* 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0<br>
* 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截)
* 得到的值),这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下下面程序IdWorker类的startTime属性)。
* 41位的时间截,可以使用69年,年T = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69<br>
* 10位的数据机器位,可以部署在1024个节点,包括5位datacenterId和5位workerId<br>
* 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号<br>
* 加起来刚好64位,为一个Long型。<br>
* SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,
* 经测试,SnowFlake每秒能够产生26万ID左右。
*/
public class SnowflakeIdWorker { /** 开始时间截 */
private final long twepoch = 1420041600000L; /** 机器id所占的位数 */
private final long workerIdBits = 5L; /** 数据标识id所占的位数 */
private final long datacenterIdBits = 5L; /** 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数) */
private final long maxWorkerId = -1L ^ (-1L << workerIdBits); /** 支持的最大数据标识id,结果是31 */
private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits); /** 序列在id中占的位数 */
private final long sequenceBits = 12L; /** 机器ID向左移12位 */
private final long workerIdShift = sequenceBits; /** 数据标识id向左移17位(12+5) */
private final long datacenterIdShift = sequenceBits + workerIdBits; /** 时间截向左移22位(5+5+12) */
private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; /** 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095) */
private final long sequenceMask = -1L ^ (-1L << sequenceBits); /** 工作机器ID(0~31) */
private long workerId; /** 数据中心ID(0~31) */
private long datacenterId; /** 毫秒内序列(0~4095) */
private long sequence = 0L; /** 上次生成ID的时间截 */
private long lastTimestamp = -1L; /**
* 构造函数
* @param workerId 工作ID (0~31)
* @param datacenterId 数据中心ID (0~31)
*/
public SnowflakeIdWorker(long workerId, long datacenterId) {
if (workerId > maxWorkerId || workerId < ) {
throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < ) {
throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
}
this.workerId = workerId;
this.datacenterId = datacenterId;
} /**
* 获得下一个ID (该方法是线程安全的)
* @return SnowflakeId
*/
public synchronized long nextId() {
long timestamp = timeGen(); //如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
if (timestamp < lastTimestamp) {
throw new RuntimeException(
String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
} //如果是同一时间生成的,则进行毫秒内序列
if (lastTimestamp == timestamp) {
sequence = (sequence + ) & sequenceMask;
//毫秒内序列溢出
if (sequence == ) {
//阻塞到下一个毫秒,获得新的时间戳
timestamp = tilNextMillis(lastTimestamp);
}
}
//时间戳改变,毫秒内序列重置
else {
sequence = 0L;
} //上次生成ID的时间截
lastTimestamp = timestamp; //移位并通过或运算拼到一起组成64位的ID
return ((timestamp - twepoch) << timestampLeftShift) //
| (datacenterId << datacenterIdShift) //
| (workerId << workerIdShift) //
| sequence;
} /**
* 阻塞到下一个毫秒,直到获得新的时间戳
* @param lastTimestamp 上次生成ID的时间截
* @return 当前时间戳
*/
protected long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
} /**
* 返回以毫秒为单位的当前时间
* @return 当前时间(毫秒)
*/
protected long timeGen() {
return System.currentTimeMillis();
} //==============================Test=============================================
/** 测试 */
public static void main(String[] args) {
SnowflakeIdWorker idWorker = new SnowflakeIdWorker(, );
for (int i = ; i < ; i++) {
long id = idWorker.nextId();
System.out.println(Long.toBinaryString(id));
System.out.println(id);
}
}
}
生成ID之雪花算法的更多相关文章
- ID 生成器 雪花算法
https://blog.csdn.net/wangming520liwei/article/details/80843248 ID 生成器 雪花算法 2018年06月28日 14:58:43 wan ...
- 分布式ID的雪花算法及坑
分布式ID生成是目前系统的常见刚需,其中以Twitter的雪花算法(Snowflake)比较知名,有Java等各种语言的版本及各种改进版本,能生成满足分布式ID,返回ID为Long长整数 但是这里有一 ...
- 适用于分布式ID的雪花算法
基于Java实现的适用于分布式ID的雪花算法工具类,这里存一下日后好找 /** * 雪花算法生成ID */ public class SnowFlakeUtil { private final sta ...
- 生成主键ID,唯一键id,分布式ID生成器雪花算法代码实现
工具类: package com.ihrm.common.utils; import java.lang.management.ManagementFactory; import java.net. ...
- 唯一ID生成器--雪花算法
在微服务架构,分布式系统中的操作会有一些全局性ID的需求,所以我们不能用数据库本身的自增功能来产生主键值,只能由程序来生成唯一的主键值.我们采用的是twitter的snokeflake(雪花)算法. ...
- 全局ID生成--雪花算法
分布式ID常见生成策略: 分布式ID生成策略常见的有如下几种: 数据库自增ID. UUID生成. Redis的原子自增方式. 数据库水平拆分,设置初始值和相同的自增步长. 批量申请自增ID. 雪花算法 ...
- 雪花算法生成分布式ID
分布式主键ID生成方案 分布式主键ID的生成方案有以下几种: 数据库自增主键 缺点: 导入旧数据时,可能会ID重复,导致导入失败 分布式架构,多个Mysql实例可能会导致ID重复 UUID 缺点: 占 ...
- Snowflake(雪花算法),什么情况下会冲突?
文章首发在公众号(龙台的技术笔记),之后同步到博客园和个人网站:xiaomage.info 分布式系统中,有一些需要使用全局唯一 ID 的场景,这种时候为了防止 ID 冲突可以使用 36 位的 UUI ...
- 分布式系统-主键唯一id,订单编号生成-雪花算法-SnowFlake
分布式系统下 我们每台设备(分布式系统-独立的应用空间-或者docker环境) * SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作 ...
随机推荐
- 三种单点登录SSO的实现原理
单点登录SSO(Single Sign On)说得简单点就是在一个多系统共存的环境下,用户在一处登录后,就不用在其他系统中登录,也就是用户的一次登录能得到其他所有系统的信任.单点登录在大型网站里使用得 ...
- 【JS新手教程】弹出两层div,及在LODOP内嵌上层
前面的博文有个简单的弹出div层[JS新手教程]浏览器弹出div层1,有一层,不过为了提示,一般会不让用户可以点击该提示之外的地方的.如果让用户弹出层后,把其他的按钮和链接都设置不可用应该比较麻烦,如 ...
- WIN10家庭版添加"本地安全策略"
新建文本文件 输入一下命令 @echo off pushd "%~dp0" dir /b C:\Windows\servicing\Packages\Microsoft-Windo ...
- C#实现排列、组合
排列组合的概念 排列:从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个元素中取出m个元素的一个排列(Arrangement). 组合:从m个不同的元素中,任取n(n≤m)个元 ...
- 最新 波克城市java校招面经 (含整理过的面试题大全)
从6月到10月,经过4个月努力和坚持,自己有幸拿到了网易雷火.京东.去哪儿.波克城市等10家互联网公司的校招Offer,因为某些自身原因最终选择了波克城市.6.7月主要是做系统复习.项目复盘.Leet ...
- MemCache可视化客户端管理及监控工具TreeNMS
参考地址:https://www.cnblogs.com/li150dan/p/9529054.html
- 第34课.数组操作符的重载("[]"重载)
1.问题:string类对象还具备c方式字符串的灵活性吗?还能直接访问单个字符吗? 答案:可以按照c字符串的方式使用string对象 string s = "a1b2c3d4e"; ...
- 用elasticsearchdump备份恢复数据
1.安装elastic searchdump mkdir /data/nodejs cd /data/nodejs wget https://nodejs.org/dist/v10.16.2/node ...
- Fourier serie
你眼中看似落叶纷飞变化无常的世界,实际只是躺在上帝怀中一份早已谱好的乐章. 时域和频域就像观察一个物体一样,一个是主视图的,一个是侧视图. 1.在有限区间上由任意图形定义的任意函数都可以表示为单纯的正 ...
- [转帖]Oracle 起诉 Google 事件
Oracle 起诉 Google 事件 https://www.cnblogs.com/panchanggui/p/9449842.html Oracle 是世界第二大软件公司 世界第一大DBMS公司 ...