BZOJ & luogu

看到某大佬AC,本蒟蒻也决定学习一下玄学的数位$dp$

(以上是今年3月写的话(叫我鸽神$qwq$))


思路:数位$DP$

提交:2次

题解:(见代码)

#include<cstdio>
#include<iostream>
#include<cstring>
#define R register int
using namespace std;
int a,b,f[][],num[];
//f[i][j]搜到第i位,前一位是j,且没有上界标记的方案数
inline int max(int a,int b){return a>b?a:b;}
inline int abs(int x){return x>?x:-x;}
int dfs(int l,bool ul,bool ck,int lst) {//l位数,ul上界标记,ck前导零标记,lst上一位
if(!l) return ;
if(!ul&&(~f[l][lst])) return f[l][lst];//记忆化
R mx=ul?num[l]:,cnt=;//mx是上界
for(R i=;i<=mx;++i) {
if(abs(lst-i)<) continue;//差小于2
if(ck&&i==) cnt+=dfs(l-,ul&&i==mx,true,-);//若一直是前导零
else cnt+=dfs(l-,ul&&i==mx,false,i);
} return ul||ck?cnt:f[l][lst]=cnt;
}
inline int solve(int x) {
R len=; memset(f,0xff,sizeof(f));
for(;x;x/=) num[++len]=x%;//分解每一位
return dfs(len,true,true,-);
}
signed main() {
scanf("%d%d",&a,&b);
printf("%d\n",solve(b)-solve(a-));//前缀和减一下
}

2019.07.18

题解 BZOJ1026 & luogu P2657 [SCOI2009]windy数 数位DP的更多相关文章

  1. luogu P2657 [SCOI2009]windy数 数位dp 记忆化搜索

    题目链接 luogu P2657 [SCOI2009]windy数 题解 我有了一种所有数位dp都能用记忆话搜索水的错觉 代码 #include<cstdio> #include<a ...

  2. 洛谷P2657 [SCOI2009]windy数 [数位DP,记忆化搜索]

    题目传送门 windy数 题目描述 windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和B,总共有多少个win ...

  3. P2657 [SCOI2009]windy数 数位dp

    数位dp之前完全没接触过,所以NOIP之前搞一下.数位dp就是一种dp,emm……用来求解区间[L,R]内满足某个性质的数的个数,且这个性质与数的大小无关. 在这道题中,dp[i][j]代表考虑了i位 ...

  4. BZOJ1026: [SCOI2009]windy数[数位DP]

    1026: [SCOI2009]windy数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 6346  Solved: 2831[Submit][Sta ...

  5. bzoj 1026 [SCOI2009]windy数 数位dp

    1026: [SCOI2009]windy数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline ...

  6. 【bzoj1026】[SCOI2009]windy数 数位dp

    题目描述 windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道,在A和B之间,包括A和B,总共有多少个windy数? 输入 包含两个整数 ...

  7. [bzoj1026][SCOI2009]windy数——数位dp

    题目 求[a,b]中的windy数个数. windy数指的是任意相邻两个数位上的数至少相差2的数,比如135是,134不是. 题解 感觉这个题比刚才做的那个简单多了...这个才真的应该是数位dp入门题 ...

  8. Luogu P2657 [SCOI2009]windy数

    一道比较基础的数位DP,还是挺套路的. 首先看题,发现这个性质和数的大小无关,因此我们可以直接数位DP,经典起手式: \(f[a,b]=f(b)-f(a-1)\) 然后考虑如何求解\(f(x)\).我 ...

  9. bzoj 1026 [ SCOI2009 ] windy数 —— 数位DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1026 蛮简单的数位DP,预处理 f[i][j] 表示 i 位数,以 j 开头的 windy ...

随机推荐

  1. Web应用中访问WEB-INF下的资源

    WEB-INF目录是出于保护资源文件的目的,只能我们开发人员自己查看不可以通过URL直接访问的: 有时候我们也想直接访问WEB-INF中的资源,那就需要用到请求转发了(重定向redirect是不可以的 ...

  2. windows下安装mongoDB(zip版)

    windows下安装mongoDB(zip版) 下面说明如何在win10下用zip包安装好mongoDB数据库 首先要先从网上下载mongoDB的zip包 http://dl.mongodb.org/ ...

  3. hdu 4826 三维dp

    dp的问题除了递推过程的设计之外 还有数据结构的选择以及怎样合理的填充数据 这个的填充是个坑..#include<iostream> #include<cstdio> #inc ...

  4. boost random library的使用

      生成满足一定分布的随机数,是统计模拟.系统仿真等应用中最基本的要求.matlab中提供了函数可以生成各种常见分布的随机数,c++使用boost random库也可以很容易实现. 一.例子 boos ...

  5. c++11 用户定义字面量

    c++11 用户定义字面量 #define _CRT_SECURE_NO_WARNINGS #include <iostream> #include <string> #inc ...

  6. 【js】null 和 undefined的区别?

    1.首先看一个判断题:null和undefined 是否相等     console.log(null==undefined)//true     console.log(null===undefin ...

  7. 某康x电视去广告

    开启adb 信源选择进入模拟电视 然后按菜单键输入2008 找到其他选项,进去把adb root打开 删除对应广告视频(短暂方法) 可以下载tvbox,利用文件管理功能 进入/data/misc/ko ...

  8. 很low的四位验证码实现

    <html> <head> <meta charset="utf-8"> </head> <body> <inpu ...

  9. python 修改、读取图片元数据

    图片元数据 图片元数据(metadata)是嵌入到图片文件中的一些标签.比较像文件属性,但是种类繁多.常见的几种标准有: EXIF:通常被数码相机在拍摄照片时自动添加,比如相机型号.镜头.曝光.图片尺 ...

  10. Spring注解实践

    原文:http://blog.csdn.net/xyh820/article/details/7303330 概述 注释配置相对于 XML 配置具有很多的优势: 它可以充分利用 Java 的反射机制获 ...