题目描述

公元五八○一年,地球居民迁至金牛座α第二行星,在那里发表银河联邦创立宣言,同年改元为宇宙历元年,并开始向银河系深处拓展。

宇宙历七九九年,银河系的两大军事集团在巴米利恩星域爆发战争。泰山压顶集团派宇宙舰队司令莱因哈特率领十万余艘战舰出征,气吞山河集团点名将杨威利组织麾下三万艘战舰迎敌。

杨威利擅长排兵布阵,巧妙运用各种战术屡次以少胜多,难免恣生骄气。在这次决战中,他将巴米利恩星域战场划分成3000030000列,每列依次编号为1, 2, …,300001,2,…,30000。之后,他把自己的战舰也依次编号为1, 2, …, 300001,2,…,30000,让第ii号战舰处于第ii列(i = 1, 2, …, 30000)(i=1,2,…,30000),形成“一字长蛇阵”,诱敌深入。这是初始阵形。当进犯之敌到达时,杨威利会多次发布合并指令,将大部分战舰集中在某几列上,实施密集攻击。合并指令为M_{i,j}Mi,j​,含义为第i号战舰所在的整个战舰队列,作为一个整体(头在前尾在后)接至第j号战舰所在的战舰队列的尾部。显然战舰队列是由处于同一列的一个或多个战舰组成的。合并指令的执行结果会使队列增大。

然而,老谋深算的莱因哈特早已在战略上取得了主动。在交战中,他可以通过庞大的情报网络随时监听杨威利的舰队调动指令。

在杨威利发布指令调动舰队的同时,莱因哈特为了及时了解当前杨威利的战舰分布情况,也会发出一些询问指令:C_{i,j}Ci,j​。该指令意思是,询问电脑,杨威利的第ii号战舰与第jj号战舰当前是否在同一列中,如果在同一列中,那么它们之间布置有多少战舰。

作为一个资深的高级程序设计员,你被要求编写程序分析杨威利的指令,以及回答莱因哈特的询问。

最终的决战已经展开,银河的历史又翻过了一页……

输入格式

第一行有一个整数T(1 \le T \le 500,000)T(1≤T≤500,000),表示总共有TT条指令。

以下有TT行,每行有一条指令。指令有两种格式:

  1. M_{i,j}Mi,j​ :ii和jj是两个整数(1 \le i,j \le 30000)(1≤i,j≤30000),表示指令涉及的战舰编号。该指令是莱因哈特窃听到的杨威利发布的舰队调动指令,并且保证第ii号战舰与第jj号战舰不在同一列。

  2. C_{i,j}Ci,j​ :ii和jj是两个整数(1 \le i,j \le 30000)(1≤i,j≤30000),表示指令涉及的战舰编号。该指令是莱因哈特发布的询问指令。

输出格式

依次对输入的每一条指令进行分析和处理:

如果是杨威利发布的舰队调动指令,则表示舰队排列发生了变化,你的程序要注意到这一点,但是不要输出任何信息;

如果是莱因哈特发布的询问指令,你的程序要输出一行,仅包含一个整数,表示在同一列上,第ii号战舰与第jj号战舰之间布置的战舰数目。如果第ii号战舰与第jj号战舰当前不在同一列上,则输出-1−1。

输入输出样例

输入 #1复制

4
M 2 3
C 1 2
M 2 4
C 4 2
输出 #1复制

-1
1

说明/提示

【样例说明】

战舰位置图:表格中阿拉伯数字表示战舰编号

思路:

  边带权并查集,附加维护两个数组,dis存的是不包括该节点的祖先节点数,初始值为0,siz表示以他为根的字树的size,注意这里的字符读入是scanf 里是%s,不能是

%c,因为可能有空格或回车,也可以开个数组,用%s

并查集:

int find(int x)
{
if(fa[x]!=x)
{
int f=find(fa[x]);
dis[x]+=dis[fa[x]];
fa[x]=f;
}
return fa[x];
}

修改操作:

if(ch=='M')
{
fa[fx]=fy;
dis[fx]=siz[fy];
siz[fy]+=siz[fx];
}
else
{
if(fx!=fy)printf("-1\n");
else printf("%d\n",abs(dis[x]-dis[y])-1);
}

代码:

#include<cstdio>
#include<iostream>
#include<cstdlib>
using namespace std;
const int N = 35000;
int T,fa[N],dis[N],siz[N];
char ch;
int find(int x)
{
if(fa[x]!=x)
{
int f=find(fa[x]);
dis[x]+=dis[fa[x]];
fa[x]=f;
}
return fa[x];
}
int main()
{
for(int i=1;i<=30000;i++)fa[i]=i,siz[i]=1;
scanf("%d",&T);
int x,y;
while(T--)
{
scanf("%s%d%d",&ch,&x,&y);
int fx=find(x),fy=find(y);
if(ch=='M')
{
fa[fx]=fy;
dis[fx]=siz[fy];
siz[fy]+=siz[fx];
}
else
{
if(fx!=fy)printf("-1\n");
else printf("%d\n",abs(dis[x]-dis[y])-1);
}
}
return 0;
}

  

【luoguP1196】 [NOI2002]银河英雄传说--边带权并查集 ,的更多相关文章

  1. NOI2002银河英雄传说-带权并查集

    [NOI2002]银河英雄传说-带权并查集 luogu P1196 题目描述 Description: 公元五八○一年,地球居民迁至金牛座α第二行星,在那里发表银河联邦创立宣言,同年改元为宇宙历元年, ...

  2. P1196 [NOI2002]银河英雄传说(带权并查集)

    这个题的题目背景很是宏大,什么宇宙战舰的都出来了.但细细一看,我们就会发现,这是带权并查集的题目,首先我们还是像之前在并查集中的操作一样,但在这里我们还是应该开数组来维护所要加的权值,两个战舰是否在同 ...

  3. 洛谷P1196 [NOI2002]银河英雄传说(带权并查集)

    题目描述 公元五八○一年,地球居民迁至金牛座α第二行星,在那里发表银河联邦创立宣言,同年改元为宇宙历元年,并开始向银河系深处拓展. 宇宙历七九九年,银河系的两大军事集团在巴米利恩星域爆发战争.泰山压顶 ...

  4. [NOI2002] 银河英雄传说 (带权并查集)

    题目描述 公元五八○一年,地球居民迁至金牛座α第二行星,在那里发表银河联邦创立宣言,同年改元为宇宙历元年,并开始向银河系深处拓展. 宇宙历七九九年,银河系的两大军事集团在巴米利恩星域爆发战争.泰山压顶 ...

  5. AcWing 238.银河英雄传说 (边带权并查集)

    题意:有\(n\)列,有\(T\)条指令,若指令格式为\(M\),则将第\(i\)号的所有战舰移到第\(j\)号所在列的后面,若指令格式为\(C\),询问\(i\)和\(j\)是否在同一列,如果在,问 ...

  6. NOI2002银河英雄传说——带权并查集

    题目:https://www.luogu.org/problemnew/show/P1196 关键点在于存下每个点的位置. 自己糊涂的地方:位置是相对于谁的位置? 因为每次给一个原来是fa的点赋位置时 ...

  7. 边带权并查集 学习笔记 & 洛谷P1196 [NOI2002] 银河英雄传说 题解

    花了2h总算把边带权并查集整明白了qaq 1.边带权并查集的用途 众所周知,并查集擅长维护与可传递关系有关的信息.然而我们有时会发现并查集所维护的信息不够用,这时"边带权并查集"就 ...

  8. P2661 信息传递[最小环+边带权并查集]

    题目来源:洛谷 题目描述 有 n 个同学(编号为 1 到 n )正在玩一个信息传递的游戏.在游戏里每人都有一个固定的信息传递对象,其中,编号为 i 的同学的信息传递对象是编号为 Ti​ 的同学. 游戏 ...

  9. luogu 1196 银河英雄传说 带权并查集

    带权并查集,其实有点像许多队列问情况的小学奥数 #include<bits/stdc++.h> #define rep(i,x,y) for(register int i=x;i<= ...

随机推荐

  1. 160个creakme(八)

    peid跑一下,没有壳 就是输入一个码 直接运行一下,出现错误提示 找字符串能找到代码位置 然后看一下401E43的引用,好像跳转指令后面就是注册成功相关字符串 然后nop掉这条指令,发现可以运行出正 ...

  2. 数值分析-Legendre正交多项式 实现函数逼近

    数值分析-Legendre正交多项式 实现函数逼近 2016年12月18日 21:27:54 冰三点水 阅读数 4057   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请 ...

  3. hdu 3364 高斯入门。。

    扣了一个高斯的介绍 比较全面(来自http://blog.csdn.net/duanxian0621/article/details/7408887) 高斯消元法,是线性代数中的一个算法,可用来求解线 ...

  4. SpringBoot下实现MongoDB字段类型转换器

    1 目的 MongoDB Java String LocalDateTime 2 实现 先定义实体类 @Data // lombok @Accessors(chain = true) @Documen ...

  5. CNN 笔记

    1. 卷积后的图像的大小为    (w+2p-f)*3 / s    W为图像的宽,p为padding的大小, f为卷积核大小, 3 为图像的通道数, s为步长 2. 卷积层和池化层的区别? 卷积层是 ...

  6. python+requests模拟登陆 学校选课系统

    最近学校让我们选课,每天都有不同的课需要选....然后突发奇想试试用python爬学校选课系统的课程信息 先把自己的浏览器缓存清空,然后在登陆界面按f12 如图: 可以看到登陆时候是需要验证码的,验证 ...

  7. jQuery获取的dom对象和原生的dom对象有何区别

    js原生获取的dom是一个对象,jQuery对象就是一个数组对象,其实就是选择出来的元素的数组集合,所以说他们两者是不同的对象类型不等价 原生DOM对象转jQuery对象 var box = docu ...

  8. git 分布式版本控制

    一.git版本控制 管理文件夹 安装省略 1. 进入要管理的文件夹 2. 初始化 (提名) 3. 管理 4. 生成版本 对应的命令: # 进入文件夹以后 右击选git bash here #初始化 g ...

  9. Spring Cloud(五)断路器监控(Hystrix Dashboard)

    在上两篇文章中讲了,服务提供者 Eureka + 服务消费者 Feign,服务提供者 Eureka + 服务消费者(rest + Ribbon),本篇文章结合,上两篇文章中代码进行修改加入 断路器监控 ...

  10. 本地套接字-本地socket

    本地套接字简单应用场景 一 #服务端--简单 import socket import os a='sock_file' if os.path.exists(a): os.remove(a) s=so ...