spark-聚合算子aggregatebykey
spark-聚合算子aggregatebykey
Aggregate the values of each key, using given combine functions and a neutral "zero value". This function can return a different result type, U, than the type of the values in this RDD, V. Thus, we need one operation for merging a V into a U and one operation for merging two U's, as in scala.TraversableOnce. The former operation is used for merging values within a partition, and the latter is used for merging values between partitions. To avoid memory allocation, both of these functions are allowed to modify and return their first argument instead of creating a new U.
使用给定的聚合函数和中性的“零值”聚合每个键的值。这个函数可以返回与这个RDD V中的值类型不同的结果类型U。
前一个操作用于合并分区内的值,而后一个操作用于合并分区之间的值。为了避免内存分配,允许这两个函数修改并返回它们的第一个参数,而不是创建一个新的U。
def aggregateByKey[U: ClassTag](zeroValue: U)(
seqOp: (U, V) => U,
combOp: (U, U) => U
): RDD[(K, U)] = self.withScope {
aggregateByKey(zeroValue, defaultPartitioner(self))(seqOp, combOp)
} def aggregateByKey[U: ClassTag](zeroValue: U, partitioner: Partitioner)(
seqOp: (U, V) => U,
combOp: (U, U) => U
): RDD[(K, U)] = self.withScope { // Serialize the zero value to a byte array so that we can get a new clone of it on each key
val zeroBuffer = SparkEnv.get.serializer.newInstance().serialize(zeroValue)
val zeroArray = new Array[Byte](zeroBuffer.limit)
zeroBuffer.get(zeroArray) lazy val cachedSerializer = SparkEnv.get.serializer.newInstance()
val createZero = () => cachedSerializer.deserialize[U](ByteBuffer.wrap(zeroArray)) // We will clean the combiner closure later in `combineByKey`
val cleanedSeqOp = self.context.clean(seqOp)
combineByKeyWithClassTag[U]((v: V) => cleanedSeqOp(createZero(), v),
cleanedSeqOp, combOp, partitioner)
}
def reduceByKey(partitioner: Partitioner, func: (V, V) => V): RDD[(K, V)] = self.withScope {
combineByKeyWithClassTag[V]((v: V) => v, func, func, partitioner)
}
def combineByKeyWithClassTag[C](
createCombiner: V => C,
mergeValue: (C, V) => C,
mergeCombiners: (C, C) => C,
partitioner: Partitioner,
mapSideCombine: Boolean = true,
serializer: Serializer = null)(implicit ct: ClassTag[C]): RDD[(K, C)]{
...
}
/**
* 按key聚合Demo
*/
object AggregateByKeyDemo {
def main(args: Array[String]): Unit = {
val conf = new SparkConf()
conf.setAppName("wcDemo")
conf.setMaster("local[4]")
val sc = new SparkContext(conf)
val rdd1 = sc.textFile("file:///e:/wc/1.txt" , 3)
val rdd2 = rdd1.flatMap(_.split(" ")).mapPartitionsWithIndex((idx, it) => {
var list: List[(String, String)] = Nil
for (e <- it) {
list = (e, e + "_" + idx) :: list
}
list.iterator
})
rdd2.collect().foreach(println)
println("=======================")
val zeroU:String = "[]"
def seqOp(a:String,b:String) = {
a + b + " ,"
}
def comOp(a:String,b:String) = {
a + "$" + b
} val rdd3 = rdd2.aggregateByKey(zeroU)(seqOp,comOp)
rdd3.collect().foreach(println) } }
(hello,hello_0) =>[hello_0]hello_0,hello_0,hello_0, =>[hello_0]hello_0,hello_0,hello_0,$[hello_1]hello_1,hello_1,$[hello_2]hello_2,hello_2,
(hello,hello_0)
(hello,hello_0)
(hello,hello_0) (hello,hello_1) =>[hello_1]hello_1,hello_1,
(hello,hello_1)
(hello,hello_1) (hello,hello_2) =>[hello_2]hello_2,hello_2,
(hello,hello_2)
(hello,hello_2) (hello,[]hello_0 ,hello_0 ,hello_0 ,hello_0 ,$[]hello_1 ,hello_1 ,hello_1 ,$[]hello_2 ,hello_2 ,hello_2 ,) (tom2,tom2_0)
(world,world_0)
(tom1,tom1_0)
(world,world_0)
(tom7,tom7_1)
(world,world_1)
(tom6,tom6_1)
(world,world_1)
(tom5,tom5_1)
(world,world_1)
(tom10,tom10_2)
(world,world_2)
(tom9,tom9_2)
(world,world_2)
(tom8,tom8_2)
(world,world_2)
spark PairRDDFunction聚合函数
------------------------------
1.reduceByKey
V类型不变,有map端合成。
2.groupByKey
按照key分组,生成的v是集合,map端不能合成。
3.aggregateByKey
可以改变v的类型,map端还可以合成。
4.combineByKeyWithClassTag
按照key合成,可以指定是否进行map端合成、任意的combiner创建函数,值合并函数以及合成器合并函数。
spark-聚合算子aggregatebykey的更多相关文章
- Spark RDD概念学习系列之Spark的算子的分类(十一)
Spark的算子的分类 从大方向来说,Spark 算子大致可以分为以下两类: 1)Transformation 变换/转换算子:这种变换并不触发提交作业,完成作业中间过程处理. Transformat ...
- Spark操作算子本质-RDD的容错
Spark操作算子本质-RDD的容错spark模式1.standalone master 资源调度 worker2.yarn resourcemanager 资源调度 nodemanager在一个集群 ...
- Spark RDD概念学习系列之Spark的算子的作用(十四)
Spark的算子的作用 首先,关于spark算子的分类,详细见 http://www.cnblogs.com/zlslch/p/5723857.html 1.Transformation 变换/转换算 ...
- 对spark算子aggregateByKey的理解
案例 aggregateByKey算子其实相当于是针对不同“key”数据做一个map+reduce规约的操作. 举一个简单的在生产环境中的一段代码 有一些整理好的日志字段,经过处理得到了RDD类型为( ...
- Spark算子 - aggregateByKey
释义 aggregateByKey逻辑类似 aggregate,但 aggregateByKey针对的是PairRDD,即键值对 RDD,所以返回结果也是 PairRDD,结果形式为:(各个Key, ...
- 列举spark所有算子
一.RDD概述 1.什么是RDD RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可 ...
- Spark RDD 算子总结
Spark算子总结 算子分类 Transformation(转换) 转换算子 含义 map(func) 返回一个新的RDD,该RDD由每一个输入元素经过func函数转换后组成 filter(func) ...
- Spark RDD算子介绍
Spark学习笔记总结 01. Spark基础 1. 介绍 Spark可以用于批处理.交互式查询(Spark SQL).实时流处理(Spark Streaming).机器学习(Spark MLlib) ...
- PairRDD中算子aggregateByKey图解
PairRDD 有几个比较麻烦的算子,常理解了后面又忘记了,自己按照自己的理解记录好,以备查阅 1.aggregateByKey aggregate 是聚合意思,直观理解就是按照Key进行聚合. 转化 ...
随机推荐
- 2019icpc南昌网络赛
B. Fire-Fighting Hero (dijstra优先队列+bfs) 题意:刚开始看错题了,以为是k次dijkstra,但是wa了,后来队友指正后发现挺水的.求S到其它点的最短路的最大值an ...
- HTTP请求方法:GET、HEAD、POST、PUT、DELETE、CONNECT、OPTIONS、TRACE 说明
平时的Rest开发,用到的都是GET,POST,PUT,DELETE类型的请求. 但Rest支持的请求类型不止前面4种,还有其他几种. 下面部分转自: https://www.html.cn/arch ...
- appium+python教程1
Python3+Appium安装使用教程 一.安装 我们知道selenium是桌面浏览器自动化操作工具(Web Browser Automation) appium是继承selenium自动化思想旨在 ...
- Spring Boot 创建动态定时任务
1,日期格式转换 //定时任务格式转换public static String convertCronTime(Date jobDate){ //https://blog.csdn.net/qq_39 ...
- java获取单张网页中img标签中的src
/** * 得到网页中图片的地址 */ public static List<String> getImgStr(String htmlStr) { List<String> ...
- (二)mybatis框架原理(图解)
目录 mybatis 框架原理图(粗略版) mybatis 框架原理图(粗略版)
- PostgreSQL练习
学生表 Studentcreate table Student(Sid varchar(6), Sname varchar(10), Sage datetime, Ssex varchar(10)); ...
- logstash grok
input { file { path => "/opt/service/test-service/logs/catalina-error*.log" type => ...
- 160个creakme(八)
peid跑一下,没有壳 就是输入一个码 直接运行一下,出现错误提示 找字符串能找到代码位置 然后看一下401E43的引用,好像跳转指令后面就是注册成功相关字符串 然后nop掉这条指令,发现可以运行出正 ...
- Mancala II
题目描述 Mancala is a family of board games played around the world, sometimes called sowing games, or c ...