BZOJ 4823 Luogu P3756 [CQOI2017]老C的方块 (网络流、最小割)
题目链接
(Luogu) https://www.luogu.org/problem/P3756
(BZOJ) http://lydsy.com/JudgeOnline/problem.php?id=4823
题解
有点神仙的最小割题。
考虑题目里的图形,如果我们用四种颜色对棋盘进行染色,奇数行依次染\(0,1,2,3,0,1,2,3...\), 偶数行依次染\(3,2,1,0,3,2,1,0...\)则条件可以转化为不能出现相连的\(4\)个颜色互不相同的块。
那么可以建一个四层的图,对于每条两侧都有关键点的特殊边,按照\(S\rightarrow 3\rightarrow 0\rightarrow 1\rightarrow 2\rightarrow T\)的顺序连边,其中\(S\rightarrow 3\)连\(3\)色点的点权,\(0\rightarrow 1\)连两个关键点权值的最小值,\(2\rightarrow T\)连\(2\)色点的点权。不出现相连的四个颜色互不相同的块等价于不存在从\(S\)到\(T\)的路径。
然后跑最小割即可。
因为是分层图,所以dinic跑得很快(复杂度应该是\(O(n\sqrt n)\)),可以通过此题。
代码
#include<bits/stdc++.h>
#define llong long long
using namespace std;
const int INF = 1e9;
namespace NetFlow
{
const int N = 1e5+2;
const int M = 8e5;
struct Edge
{
int v,w,nxt,rev;
} e[(M<<1)+3];
int fe[N+3];
int te[N+3];
int dep[N+3];
int que[N+3];
int n,en,s,t;
void addedge(int u,int v,int w)
{
// printf("addedge %d %d %d\n",u,v,w);
en++; e[en].v = v; e[en].w = w;
e[en].nxt = fe[u]; fe[u] = en; e[en].rev = en+1;
en++; e[en].v = u; e[en].w = 0;
e[en].nxt = fe[v]; fe[v] = en; e[en].rev = en-1;
}
bool bfs()
{
for(int i=1; i<=n; i++) dep[i] = 0;
int head = 1,tail = 1; que[1] = s; dep[s] = 1;
while(head<=tail)
{
int u = que[head]; head++;
for(int i=fe[u]; i; i=e[i].nxt)
{
int v = e[i].v;
if(e[i].w>0 && dep[v]==0)
{
dep[v] = dep[u]+1;
if(v==t)return true;
tail++; que[tail] = v;
}
}
}
return false;
}
int dfs(int u,int cur)
{
if(u==t||cur==0) {return cur;}
int rst = cur;
for(int &i=te[u]; i; i=e[i].nxt)
{
int v = e[i].v;
if(e[i].w>0 && rst>0 && dep[v]==dep[u]+1)
{
int flow = dfs(v,min(rst,e[i].w));
if(flow>0)
{
e[i].w -= flow;
rst -= flow;
e[e[i].rev].w += flow;
if(rst==0) {return cur;}
}
}
}
if(rst==cur) {dep[u] = -2;}
return cur-rst;
}
int dinic(int _n,int _s,int _t)
{
n = _n,s = _s,t = _t;
int ret = 0;
while(bfs())
{
for(int i=1; i<=n; i++) te[i] = fe[i];
memcpy(te,fe,sizeof(int)*(n+1));
ret += dfs(s,INF);
}
return ret;
}
}
using NetFlow::addedge;
using NetFlow::dinic;
const int N = 1e5;
struct Point
{
int x,y,w;
} a[N+3];
map<int,int> mp[N+3];
int id[N+3],clr[N+3];
int n,nx,ny;
int getclr(int x,int y)
{
if(y&1) {return (x-1)&3;}
else {return 3-((x-1)&3);}
}
int main()
{
scanf("%d%d%d",&nx,&ny,&n);
for(int i=1; i<=n; i++)
{
scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].w);
mp[a[i].x][a[i].y] = i;
}
for(int i=1; i<=n; i++)
{
int x = a[i].x,y = a[i].y,clr = getclr(x,y);
if(((x+(y<<1))&3)==3 && mp[x+1].count(y))
{
int j = mp[x+1][y],w = min(a[i].w,a[j].w);
if(clr==0)
{
int k = mp[x-1][y]; if(k) {addedge(k+2,i+2,INF);}
k = mp[x][y-1]; if(k) {addedge(k+2,i+2,INF);}
k = mp[x][y+1]; if(k) {addedge(k+2,i+2,INF);}
k = mp[x+2][y]; if(k) {addedge(j+2,k+2,INF);}
k = mp[x+1][y+1]; if(k) {addedge(j+2,k+2,INF);}
k = mp[x+1][y-1]; if(k) {addedge(j+2,k+2,INF);}
addedge(i+2,j+2,w);
}
else if(clr==1)
{
int k = mp[x+2][y]; if(k) {addedge(k+2,j+2,INF);}
k = mp[x+1][y+1]; if(k) {addedge(k+2,j+2,INF);}
k = mp[x+1][y-1]; if(k) {addedge(k+2,j+2,INF);}
k = mp[x-1][y]; if(k) {addedge(i+2,k+2,INF);}
k = mp[x][y-1]; if(k) {addedge(i+2,k+2,INF);}
k = mp[x][y+1]; if(k) {addedge(i+2,k+2,INF);}
addedge(j+2,i+2,w);
}
}
else if(clr==3)
{
addedge(1,i+2,a[i].w);
}
else if(clr==2)
{
addedge(i+2,2,a[i].w);
}
}
int ans = dinic(n+2,1,2);
printf("%d\n",ans);
return 0;
}
BZOJ 4823 Luogu P3756 [CQOI2017]老C的方块 (网络流、最小割)的更多相关文章
- BZOJ4823 [Cqoi2017]老C的方块 【最小割】
题目 老C是个程序员. 作为一个懒惰的程序员,老C经常在电脑上玩方块游戏消磨时间.游戏被限定在一个由小方格排成的R行C列网格上,如果两个小方格有公共的边,就称它们是相邻的,而且有些相邻的小方格之间的公 ...
- 【洛谷P3756】[CQOI2017]老C的方块(最小割)
洛谷 题意: 给出一个网格图类似于这样: 现在给出一个\(n*m\)大小的网格,之后会给出一些点,若某些点相连形成了如下的几个图案,那么就是不好的. 现在可以删去一些点,但删除每个点都有一些代价,问最 ...
- 洛谷$P3756\ [CQOI2017]$老$C$的方块 网络流
正解:网络流 解题报告: 传送门$QwQ$ 看到不能出现给定的讨厌的图形,简单来说就,特殊边两侧的方格不能同时再连方格. 所以如果出现,就相当于是四种方案?就分别炸四个格子. 然后冷静分析一波之后发现 ...
- BZOJ4823 CQOI2017老C的方块(最小割)
如果将其转化为一个更一般的问题即二分图带权最小单边点覆盖(最小控制集)感觉是非常npc的.考虑原题给的一大堆东西究竟有什么奇怪的性质. 容易发现如果与特殊边相邻的两格子都放了方块,并且这两个格子都各有 ...
- BZOJ 4823 Luogu P3756 老C的方块 染色+最小割
题面太长了请各位自行品尝—>老C的方块 分析: 我们要解决掉所有使人弃疗的组合,还要保证花费最小,容易想到最小割(当然你要是想费用流的话,我们就没办法定义流量了) 我们来分析一下那些令人弃疗的组 ...
- [bzoj4823][洛谷P3756][Cqoi2017]老C的方块
Description 老 C 是个程序员. 作为一个懒惰的程序员,老 C 经常在电脑上玩方块游戏消磨时间.游戏被限定在一个由小方格排成的R行C列网格上 ,如果两个小方格有公共的边,就称它们是相邻的, ...
- BZOJ 2039 / Luogu P1791 [2009国家集训队]employ人员雇佣 (最小割)
题面 BZOJ传送门 Luogu传送门 分析 考虑如何最小割建图,因为这仍然是二元关系,我们可以通过解方程来确定怎么建图,具体参考论文 <<浅析一类最小割问题 湖南师大附中 彭天翼> ...
- bzoj 4823 [Cqoi2017]老C的方块——网络流
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4823 一个不合法方案其实就是蓝线的两边格子一定选.剩下两部分四相邻格子里各选一个. 所以这个 ...
- BZOJ 4823 [Cqoi2017]老C的方块 ——网络流
lrd的题解:http://www.cnblogs.com/liu-runda/p/6695139.html 我还是太菜了.以后遇到这种题目应该分析分析性质的. 网络流复杂度真是$O(玄学)$ #in ...
随机推荐
- Lua 截取字符串(截取utf-8格式字符串)
对utf-8完全没概念的可以看看我上一篇随笔:简单说说utf-8编码格式 另外,还要知道string.sub 和 string.byte 的用法. 先上完整代码: local StringHelper ...
- 啥叫K8s?啥是k8s?
•Kubernetes介绍 1.背景介绍 云计算飞速发展 - IaaS - PaaS - SaaS Docker技术突飞猛进 - 一次构建,到处运行 - 容器的快速轻量 - 完整的生态环境 2.什么是 ...
- ZROI-Day2比赛解题报告
ZROIDay2-比赛解题报告 版权原因不提供题面信息 序 这几天作息有点鬼畜,虽然昨晚很晚睡但是早上精神还不错,看到题发现T1很友好?T2woc这暴力都好难打?T3多项式?!这样下去比赛会不会出现更 ...
- 【题解】P3391 文艺平衡树
用pb_ds库中的rope水过去的,忽然发现这玩意能水好多模拟题. 详见这个博客:背景的小姐姐真的好看 声明 #include <ext/rope> using namespace __g ...
- python爬取妹子图全站全部图片-可自行添加-线程-进程爬取,图片去重
from bs4 import BeautifulSoupimport sys,os,requests,pymongo,timefrom lxml import etreedef get_fenlei ...
- prototype,__proto__,constructor理解
prototype: 任何函数(箭头函数除外)都具有一个 prototype属性,该属性是一个对象.一般情况下只有声明function的变量才会有(自动生成)prototype这个属性,而functi ...
- Oracle 11.2.0.1 ADG环境MRP进程遭遇ORA
环境:Linux + Oracle 11.2.0.1 ADG现象:发现备库没有应用日志 1. 数据库查询备库目前状态发现备库目前没有应用日志,apply lag已经显示备库有3天21小时多没有应用日志 ...
- 解决'androidx.arch.core:core-runtime' has different version for the compile (2.0.0) and runtime (2.0.1)
先说原因,我们引用的包版本不同产生了冲突,所以编译不通过.解决的办法是在引用的时候排除一个版本,只留一个版本. 解决过程: 先找出哪些库引用了相同的库,仅仅是版本不同. gradle app:depe ...
- JavaWeb【过滤器】
定义: 服务器端组件,可以截取用户端的请求和响应,并对这些信息做过滤. 课程概要: 1.工作原理 2.生命周期 1.web.xml配置 注意:url-pattern配置路径前面需要加"/&q ...
- layDate面板出现红色花纹图案
要使用layDate,有两种方法: 1. 要么在引用layui.js和layui.css,然后通过layui.use('laydate', callback) 加载模块后,调用方法使用. 2. 去la ...