N个整数组成的序列a[1],a[2],a[3],…,a[n],你可以对数组中的一对元素进行交换,并且交换后求a[1]至a[n]的最大子段和,所能得到的结果是所有交换中最大的。当所给的整数均为负数时和为0。

  例如:{-2,11,-4,13,-5,-2, 4}将 -4 和 4 交换,{-2,11,4,13,-5,-2, -4},最大子段和为11 + 4 + 13 = 28。
 Input
  第1行:整数序列的长度N(2 <= N <= 50000)
  第2 - N + 1行:N个整数(-10^9 <= A[i] <= 10^9)
 Output
  输出交换一次后的最大子段和。

  先考虑与左边的数字交换的情况。

  枚举交换位置x,把交换后的段拆成x左边和x右边两部分算。

  需要事先计算出前缀和、后缀和、后缀和的后缀最小值、(前缀和 - 前缀最大值)的前缀最小值。

  和右边的数交换同理。。

 #include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<cmath>
#define ll long long
#define ui unsigned int
#define ull unsigned long long
using namespace std;
const int maxn=,modd=;
ll mn1[maxn],mn2[maxn],_mn1[maxn],_mn2[maxn],pr[maxn],af[maxn],ans;
int prmx[maxn],afmx[maxn],a[maxn];
int i,j,k,n,m; int ra,fh;char rx;
inline int read(){
rx=getchar(),ra=,fh=;
while((rx<''||rx>'')&&rx!='-')rx=getchar();
if(rx=='-')fh=-,rx=getchar();
while(rx>=''&&rx<='')ra*=,ra+=rx-,rx=getchar();return ra*fh;
} int main(){
n=read();prmx[]=afmx[n+]=-1e9;
for(i=;i<=n;i++)a[i]=read(),pr[i]=pr[i-]+a[i],prmx[i]=max(prmx[i-],a[i]);
for(i=n;i;i--)af[i]=af[i+]+a[i],afmx[i]=max(afmx[i+],a[i]); // mn1[1]=0,mn2[1]=pr[1];
for(i=;i<=n;i++)
mn1[i]=min(mn1[i-],pr[i]-prmx[i]),
mn2[i]=min(mn2[i-],pr[i]);
// _mn1[n]=0,_mn2[n]=af[n];
for(i=n;i;i--)
_mn1[i]=min(_mn1[i+],af[i]-afmx[i]),
_mn2[i]=min(_mn2[i+],af[i]);
for(i=;i<=n;i++)
//i=15,//printf(" %lld-%lld %lld-%lld\n",af[i+1],_mn2[i+1],pr[i-1],mn1[i-1]),
ans=max(ans,(af[i+]-_mn2[i+])+(pr[i-]-mn1[i-])),
ans=max(ans,(pr[i-]-mn2[i-])+(af[i+]-_mn1[i+])),
ans=max(ans,pr[i]-mn2[i]);
printf("%lld\n",ans);
}

[51nod1254]最大子段和 V2的更多相关文章

  1. 51nod1254 最大子段和 V2 DP

    ---题面--- 题解: 表示今天做题一点都不顺.... 这题也是看了题解思路然后自己想转移的. 看的题解其实不是这道题,但是是这道题的加强版,因为那道题允许交换k对数. 因为我们选出的是连续的一段, ...

  2. 51nod 1053 最大M子段和 V2

    N个整数组成的序列a[1],a[2],a[3],…,a[n],将这N个数划分为互不相交的M个子段,并且这M个子段的和是最大的.如果M >= N个数中正数的个数,那么输出所有正数的和. 例如:-2 ...

  3. 最大M子段和 V2

    51nod1053 这题还是我们熟悉的M子段和,只不过N,M<=50000. 这题似乎是一个堆+链表的题目啊 开始考虑把所有正数负数锁在一起. 比如: 1 2 3 -1 –2 -3 666 缩成 ...

  4. 51nod 1254 最大子段和 V2 ——单调栈

    N个整数组成的序列a[1],a[2],a[3],…,a[n],你可以对数组中的一对元素进行交换,并且交换后求a[1]至a[n]的最大子段和,所能得到的结果是所有交换中最大的.当所给的整数均为负数时和为 ...

  5. 51nod 1254 最大子段和 V2

    N个整数组成的序列a[1],a[2],a[3],…,a[n],你可以对数组中的一对元素进行交换,并且交换后求a[1]至a[n]的最大子段和,所能得到的结果是所有交换中最大的.当所给的整数均为负数时和为 ...

  6. 51nod1524 最大子段和V2

    题干 N个整数组成的序列a[1],a[2],a[3],-,a[n],你可以对数组中的一对元素进行交换,并且交换后求a[1]至a[n]的最大子段和,所能得到的结果是所有交换中最大的.当所给的整数均为负数 ...

  7. 51Nod1053 最大M子段和V2 二分+DP

    传送门 直接DP的话最多也只能做到\(O(nm)\),对于\(5\times 10^4\)的数据范围实在无能为力 夹克老爷提供的做法是贪心,思想大概是在调整的同时,合理构造每个选择对应的新状态,使得新 ...

  8. 51nod1053 最大M子段和 V2

    $n \leq 50000$的序列,问选不超过$m \leq 50000$个区间使得和最大. 如果正数区间总数比$m$小那肯定全选.否则有两种方式减少区间数量:丢掉一个正区间:补一个负区间连接两个正区 ...

  9. 51Nod 最大M子段和系列 V1 V2 V3

    前言 \(HE\)沾\(BJ\)的光成功滚回家里了...这堆最大子段和的题抠了半天,然而各位\(dalao\)们都已经去做概率了...先%为敬. 引流之主:老姚的博客 最大M子段和 V1 思路 最简单 ...

随机推荐

  1. [置顶] xamarin android自定义标题栏(自定义属性、回调事件)

    自定义控件的基本要求 这篇文章就当是自定义控件入门,看了几篇android关于自定义控件的文章,了解了一下,android自定义控件主要有3种方式: 自绘控件:继承View类,所展示的内容在OnDra ...

  2. css弹性盒子新旧兼容

    前言:本篇随笔是对弹性盒子有了解的人来写的这篇文章,具体属性产生的效果这里不做说明,基础的东西去查文档.这里只是总结. 时至今日,css3的flex弹性盒子在移动端基本上都是支持的,但不排除有些些低版 ...

  3. C# 调用动态链接库,给游览器写入Cookie

    样例代码: class Program { /// <summary> /// 写 /// </summary> /// <param name="lpszUr ...

  4. git 分支操作

    查看git分支: git fetch刷新git git branch  -a 列出所有的分支 git checkout origin/要切换的分支 git branch -r 查看远程分支 git c ...

  5. css实现多行文本溢出显示省略号(…)全攻略

    省略号在ie中可以使用text-overflow:ellipsis了,但有很多的浏览器都需要固定宽度了,同时ff这些浏览器并不支持text-overflow:ellipsis设置了,下文来给各位整理一 ...

  6. 3D轮播切换特效 源码

    这个3D轮播切换特效是我2017年2月份写的 当初我 刚接触HTML不久,现在把源码分享给大家 源码的注释超级清楚 . <!-- 声明文档类型:html 作用:符合w3c统一标准规范 每个浏览器 ...

  7. TensorFlow常用的函数

    TensorFlow中维护的集合列表 在一个计算图中,可以通过集合(collection)来管理不同类别的资源.比如通过 tf.add_to_collection 函数可以将资源加入一个 或多个集合中 ...

  8. JavaBean入门笔记

    看了JavaBean感觉很困惑,不知道什么意思,直到查看了资料发现自己理解错误,把JavaBean误当成一种技术,其实Java Bean只是符合一定规范的Java类,便于封装重用.符合这种规范的Jav ...

  9. Fiddler的hosts配置使用

    前提:使用fiddler的hosts配置,可以方便的配置自己想要测试环境,不需要每次配置hosts都到windows目录下去修改hosts文件 1.点击Tool->HOSTS,打开hosts的配 ...

  10. python模块安装报错 :error: command 'gcc' failed with exit status 1

    参考:http://blog.csdn.net/fenglifeng1987/article/details/38057193 解决方法 yum install gcc libffi-devel py ...