从马尔可夫模型(Markov Model)到隐马尔可夫模型(Hidden Markov Model)
1、参考资料:
博客园 - 刘建平随笔:https://www.cnblogs.com/pinard/p/6945257.html
哔站up主 - 白手起家的百万富翁:https://www.bilibili.com/video/BV1DK411W7jJ?from=search&seid=2670213518419567446
哔站up主 - asia1987:https://www.bilibili.com/video/BV13C4y1W7iB/?spm_id_from=trigger_reload
2、马尔可夫模型(MM)
如下图例子1:先玩-->再吃-->再睡,就是一条马尔科夫链,是可观测到的,我们可以直接求解这条马尔科夫链的概率。

如下图例子2:天气情况是可观测的,已知晴天、多云、雨天之间的转换概率,如果今天是晴天,就可以推断出明天各种天气的概率,同样后天的天气可以由明天的天气进行计算。

3、隐马尔可夫模型(HMM)
如下图例子2变形:天气情况是不可观测的(即隐藏状态),但我们发现水藻的干燥与否和天气有关,而水藻又是可观测的,我们可以通过水藻来推测这三天的天气情况。

从上面的例子我们不难看出:隐马尔可夫模型是根据我们可见的东西(水藻)去推测我们真正想要的东西(天气)。
4、HMM五元组、三要素
- 观测序列-O (水藻状态,可观测) (序列长度:任意)
- (隐藏)状态序列-I (天气状态,不可观测) (序列长度:任意,目前看下来其长度同观测序列)
- 初始状态概率向量-Π (向量大小:(1*N)T)
- 状态转移概率矩阵-A (矩阵大小:状态N*状态N)
- 观测状态概率矩阵-B (也叫发射矩阵B) (矩阵大小:状态N*观测M)
其中后三项为HMM的三要素:λ=(Π,A,B)
5、HMM两个基本假设
- 齐次马尔可夫性假设(一阶马尔可夫假设):当前时刻的隐藏状态,只依赖于上一时刻的隐藏状态,与其它时刻状态和观测值都是无关的。
- 观测独立性假设(隐藏状态假设):当前时刻的观测值,只依赖于当前时刻的隐藏状态,与其它时刻状态和观测值都是无关的。

PS:还有一种说法,多了一个转换函数稳定性假设。

6、应用HMM来求解的三个基本问题
- 概率计算:给定模型λ=(π,A,B)和观测序列O,求观测序列O出现的概率。 (前向-后向算法)
- 解码问题:给定模型λ=(π,A,B)和观测序列O,求概率最大的隐藏状态序列I。 (viterbi算法)
- 学习问题:给定观测序列O,求观测序列O概率最大时模型λ=(π,A,B)的参数。 (极大似然估计算法)

7、实例一
有三个骰子(D4四面体,D6六面体,D8八面体),每个面都写有一个数字(如下图),进行有放回的抽样。

由上可知:观测值是骰子上的数字,有8种,即M=8;隐藏状态是几面体骰子,有3种,即N=3;
按照HMM五元组:
- 在完成一轮有放回抽样,我们可以得到一个观测序列O如下
- 隐藏状态序列 I 未知,待求
- 初始状态概率向量π如下,一般平均初始化
- 状态转移概率矩阵A如下,一般经验、统计得到
- 观测概率分布矩阵B如下,一般经验或按照实际情况计算得到

8、实例二
股市有三种隐藏状态(牛市、熊市、横盘),有三种观测状态(上涨、下跌、不变),HMM五元组如下图。



从马尔可夫模型(Markov Model)到隐马尔可夫模型(Hidden Markov Model)的更多相关文章
- NLP —— 图模型(一)隐马尔可夫模型(Hidden Markov model,HMM)
本文简单整理了以下内容: (一)贝叶斯网(Bayesian networks,有向图模型)简单回顾 (二)隐马尔可夫模型(Hidden Markov model,HMM) 写着写着还是写成了很规整的样 ...
- 无法将类型“System.Collections.Generic.IEnumerable<EmailSystem.Model.TemplateInfo>”隐式转换为“System.Collections.Generic.List<EmailSystem.Model.TemplateInf
List<Model.Template> templateList = templateBLL.RecommendTemplateByOrder(modelEbay); List<M ...
- 隐马尔科夫模型 HMM(Hidden Markov Model)
本科阶段学了三四遍的HMM,机器学习课,自然语言处理课,中文信息处理课:如今学研究生的自然语言处理,又碰见了这个老熟人: 虽多次碰到,但总觉得一知半解,对其了解不够全面,借着这次的机会,我想要直接搞定 ...
- 隐马尔科夫模型(hidden Markov Model)
万事开头难啊,刚开头确实不知道该怎么写才能比较有水平,这篇博客可能会比较长,隐马尔科夫模型将会从以下几个方面进行叙述:1 隐马尔科夫模型的概率计算法 2 隐马尔科夫模型的学习算法 3 隐马尔科夫模型 ...
- 转:隐马尔可夫模型(HMM)攻略
隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. Baum 和其它一些学者发表在一系列的统计学论文中,随后在语言识别,自然语言处理以及生物信息等领域体现了很大的价 ...
- 隐马尔可夫模型(HMM)
转自:http://blog.csdn.net/likelet/article/details/7056068 隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. ...
- 隐马尔可夫模型(HMM)攻略
隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. Baum 和其它一些学者发表在一系列的统计学论文中,随后在语言识别,自然语言处理以及生物信息等领域体现了很大的价 ...
- 隐马尔可夫模型(HMM)
隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. Baum 和其它一些学者发表在一系列的统计学论文中,随后在语言识别,自然语言处理以及生物信息等领域体现了很大的价 ...
- HMM:隐马尔可夫模型HMM
http://blog.csdn.net/pipisorry/article/details/50722178 隐马尔可夫模型 隐马尔可夫模型(Hidden Markov Model,HMM)是统计模 ...
随机推荐
- Squares UVA - 201
A children's board game consists of a square array of dots that contains lines connecting some of th ...
- Javascript图片懒加载
懒加载的意义 懒加载的主要目的是作为服务器前端的优化,减少请求数或延迟请求数. 懒加载的实现 1.第一种是纯粹的延迟加载,使用setTimeOut或setInterval进行加载延迟. 2.第二种是条 ...
- GridSearchCV 参数
GridSearchCV(estimator, param_grid, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, c ...
- 【MQ中间件】RabbitMQ -- RabbitMQ死信队列及内存监控(4)
1.RabbitMQ TTL及死信队列 1.1.TTL概述 过期时间TTL表示可以对消息设置预期的时间,在这个时间内都可以被消费者接收获取:过了之后消息将自动被删除.RabbitMQ可以对消息和队列设 ...
- 【故障公告】数据库服务器再次 CPU 100% 引发全站故障
今天五一劳动节的一大早 5:50-6:30 期间,我们使用的阿里云 RDS SQL Server 数据库实例再次出现 CPU 100% 问题,引发全站故障,由此给您带来麻烦,请您谅解. 我们发现故障后 ...
- 基于MATLAB的手写公式识别(3)
基于MATLAB的手写公式识别 图像的膨胀化,获取边缘(思考是否需要做这种处理,初始参考样本相对简单) %膨胀 imdilate(dilate=膨胀/扩大) clc clear A1=imread(' ...
- SpringCloud(五)GateWay网关
Config 分布式配置中心 概述 微服务意味着要将单体应用中的业务拆分成个个子服务,每个服务的粒度相对较小因此系统中会出现大量的服务 由于每个服务都需要必要的配置信息才能运行,所以一套集中式的.动态 ...
- Linux安装MySQL8高版本压缩包(通用)
前言 前段时间领导让我部署测试环境,希望安装高版本的MySQL,过程遇到很多问题,特此记录帮助迷失的人们 下载 MySQL官方下载地址:https://dev.mysql.com/downloads/ ...
- 【Spring】 Spring如何解决循环依赖的问题?
https://mp.weixin.qq.com/s/FtbzTMxHgzL0G1R2pSlh-A 通常来说,如果问Spring内部如何解决循环依赖,一定是单默认的单例Bean中,属性互相引用的场景. ...
- PWD 好网站
http://angelboy.logdown.com/ https://wizardforcel.gitbooks.io/sploitfun-linux-x86-exp-tut/content/ h ...