从马尔可夫模型(Markov Model)到隐马尔可夫模型(Hidden Markov Model)
1、参考资料:
博客园 - 刘建平随笔:https://www.cnblogs.com/pinard/p/6945257.html
哔站up主 - 白手起家的百万富翁:https://www.bilibili.com/video/BV1DK411W7jJ?from=search&seid=2670213518419567446
哔站up主 - asia1987:https://www.bilibili.com/video/BV13C4y1W7iB/?spm_id_from=trigger_reload
2、马尔可夫模型(MM)
如下图例子1:先玩-->再吃-->再睡,就是一条马尔科夫链,是可观测到的,我们可以直接求解这条马尔科夫链的概率。

如下图例子2:天气情况是可观测的,已知晴天、多云、雨天之间的转换概率,如果今天是晴天,就可以推断出明天各种天气的概率,同样后天的天气可以由明天的天气进行计算。

3、隐马尔可夫模型(HMM)
如下图例子2变形:天气情况是不可观测的(即隐藏状态),但我们发现水藻的干燥与否和天气有关,而水藻又是可观测的,我们可以通过水藻来推测这三天的天气情况。

从上面的例子我们不难看出:隐马尔可夫模型是根据我们可见的东西(水藻)去推测我们真正想要的东西(天气)。
4、HMM五元组、三要素
- 观测序列-O (水藻状态,可观测) (序列长度:任意)
- (隐藏)状态序列-I (天气状态,不可观测) (序列长度:任意,目前看下来其长度同观测序列)
- 初始状态概率向量-Π (向量大小:(1*N)T)
- 状态转移概率矩阵-A (矩阵大小:状态N*状态N)
- 观测状态概率矩阵-B (也叫发射矩阵B) (矩阵大小:状态N*观测M)
其中后三项为HMM的三要素:λ=(Π,A,B)
5、HMM两个基本假设
- 齐次马尔可夫性假设(一阶马尔可夫假设):当前时刻的隐藏状态,只依赖于上一时刻的隐藏状态,与其它时刻状态和观测值都是无关的。
- 观测独立性假设(隐藏状态假设):当前时刻的观测值,只依赖于当前时刻的隐藏状态,与其它时刻状态和观测值都是无关的。

PS:还有一种说法,多了一个转换函数稳定性假设。

6、应用HMM来求解的三个基本问题
- 概率计算:给定模型λ=(π,A,B)和观测序列O,求观测序列O出现的概率。 (前向-后向算法)
- 解码问题:给定模型λ=(π,A,B)和观测序列O,求概率最大的隐藏状态序列I。 (viterbi算法)
- 学习问题:给定观测序列O,求观测序列O概率最大时模型λ=(π,A,B)的参数。 (极大似然估计算法)

7、实例一
有三个骰子(D4四面体,D6六面体,D8八面体),每个面都写有一个数字(如下图),进行有放回的抽样。

由上可知:观测值是骰子上的数字,有8种,即M=8;隐藏状态是几面体骰子,有3种,即N=3;
按照HMM五元组:
- 在完成一轮有放回抽样,我们可以得到一个观测序列O如下
- 隐藏状态序列 I 未知,待求
- 初始状态概率向量π如下,一般平均初始化
- 状态转移概率矩阵A如下,一般经验、统计得到
- 观测概率分布矩阵B如下,一般经验或按照实际情况计算得到

8、实例二
股市有三种隐藏状态(牛市、熊市、横盘),有三种观测状态(上涨、下跌、不变),HMM五元组如下图。



从马尔可夫模型(Markov Model)到隐马尔可夫模型(Hidden Markov Model)的更多相关文章
- NLP —— 图模型(一)隐马尔可夫模型(Hidden Markov model,HMM)
本文简单整理了以下内容: (一)贝叶斯网(Bayesian networks,有向图模型)简单回顾 (二)隐马尔可夫模型(Hidden Markov model,HMM) 写着写着还是写成了很规整的样 ...
- 无法将类型“System.Collections.Generic.IEnumerable<EmailSystem.Model.TemplateInfo>”隐式转换为“System.Collections.Generic.List<EmailSystem.Model.TemplateInf
List<Model.Template> templateList = templateBLL.RecommendTemplateByOrder(modelEbay); List<M ...
- 隐马尔科夫模型 HMM(Hidden Markov Model)
本科阶段学了三四遍的HMM,机器学习课,自然语言处理课,中文信息处理课:如今学研究生的自然语言处理,又碰见了这个老熟人: 虽多次碰到,但总觉得一知半解,对其了解不够全面,借着这次的机会,我想要直接搞定 ...
- 隐马尔科夫模型(hidden Markov Model)
万事开头难啊,刚开头确实不知道该怎么写才能比较有水平,这篇博客可能会比较长,隐马尔科夫模型将会从以下几个方面进行叙述:1 隐马尔科夫模型的概率计算法 2 隐马尔科夫模型的学习算法 3 隐马尔科夫模型 ...
- 转:隐马尔可夫模型(HMM)攻略
隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. Baum 和其它一些学者发表在一系列的统计学论文中,随后在语言识别,自然语言处理以及生物信息等领域体现了很大的价 ...
- 隐马尔可夫模型(HMM)
转自:http://blog.csdn.net/likelet/article/details/7056068 隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. ...
- 隐马尔可夫模型(HMM)攻略
隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. Baum 和其它一些学者发表在一系列的统计学论文中,随后在语言识别,自然语言处理以及生物信息等领域体现了很大的价 ...
- 隐马尔可夫模型(HMM)
隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. Baum 和其它一些学者发表在一系列的统计学论文中,随后在语言识别,自然语言处理以及生物信息等领域体现了很大的价 ...
- HMM:隐马尔可夫模型HMM
http://blog.csdn.net/pipisorry/article/details/50722178 隐马尔可夫模型 隐马尔可夫模型(Hidden Markov Model,HMM)是统计模 ...
随机推荐
- k8s 运行单实例 mysql
配置文件mysql.yaml --- apiVersion: v1 kind: Service metadata: name: mysql-01 spec: ports: - port: 3306 s ...
- 【cypress】2. 安装Cypress(windows系统),以及cypress open报错解决。
安装cypress. 一.操作系统 先确认下你的系统,是否在cypress支持范围之内: macOS 10.9 以上 (仅64-bit) Linux Ubuntu 12.04及以上版本,Fedora ...
- ZOJ 3736 模拟魔方
题意: 2*2*2的魔方,给你一个初始状态,和一个限定步数,问你在这么多步数条件下最多能有多少面拼好,(不是累加关系,是某一个状态的最多,最多是6); 思路: 最多是7步,所以直 ...
- PAT 乙级 -- 1009 -- 说反话
题目简述 给定一句英语,要求你编写程序,将句中所有单词的顺序颠倒输出. 输入格式:测试输入包含一个测试用例,在一行内给出总长度不超过80的字符串.字符串由若干单词和若干空格组成,其中单词是 ...
- AWVS扫描器的用法
目录 AWVS AWVS功能介绍 AWVS如何工作 审核漏洞 AWVS11页面介绍 AWVS11中建立扫描 AWVS10.5中的介绍 AWVS11版本启动失败 利用Burpsuite修改AWVS的数据 ...
- XCTF-unfinish
unfinish 之前做过这个题,这是之前写的WP:链接
- Day006 可变参数
可变参数(不定项参数) 在jdk1.5开始,java支持传递同类型的可变参数给一个方法. 在方法声明中,在指定参数类型后加一个省略号(...). 一个方法只能指定一个可变参数,它必须是方法的最后一个参 ...
- 【TensorFlow】使用Object Detection API 训练自己的数据集报错
错误1: 训练正常开始后,能正常看到日志输出,但中途报错 ResourceExhaustedError (see above for traceback): OOM when allocating ...
- Error querying database. Cause: java.lang.IllegalArgumentException:Failed to decrypt.(错误笔记)
java.lang.IllegalArgumentException:Failed to decrypt 从错误可以看出,解密失败. 原因是你在数据库连接配置的地方,设置了加密.即: config.d ...
- Redis6.x学习笔记(二)持久化之RDB
前言 最近学习Redis6.x,特做笔记以备忘,与大家共学.课程是从私塾在线下载的,他们把架构师课程都放出来了,大家可以去下载学习,不要钱的,地址是http://t.hk.uy/eK7,课程很不错,值 ...