Richard D. Gill, Product integration

一般的积分是指黎曼积分, 其计算是把区域无限细分求和并取极限, 有另外一种积分是把区域无限细分求积并取极限, 这个在生存模型中有很多应用.

生存模型

设生存的时间为随机变量\(T\), 则生存函数定义为

\[S(t):= \mathrm{Pr} (T \ge t), \: t>0,
\]

显然\(S(0)=1\). 生存函数表示, 一个个体生存时间超过\(t\)的概率.

连续情形

设随机变量\(T\)所对应的密度函数为\(f(t)\), 并定义hazard rate为

\[\alpha (t) := \mathop{\lim} \limits_{h \rightarrow 0} \frac{\mathrm{Pr}(t \le T \le t+h|T \ge t)}{h},
\]

注意到

\[\frac{\mathrm{Pr}(t \le T \le t+h|T \ge t)}{h}= \frac{\mathrm{Pr}(t\le T \le t+h)}{h \cdot \mathrm{Pr}(T\ge t)},
\]

\[\alpha(t)=f(t)/S(t).
\]

\[f(t) =\frac{\mathrm{d}F(t)}{\mathrm{d}t} = \frac{\mathrm{d}(1-S(t))}{\mathrm{d}t}=-\frac{d}{dt}S(t)=:S'(t).
\]

所以

\[\alpha(t)=-\frac{S'(t)}{S(t)}=-\frac{\mathrm{d}}{\mathrm{d}t} \log S(t),
\]

\[S(t)=\exp \{ -\int_{0}^t \alpha(s) \mathrm{d}s\}, \: t>0.
\]

离散情形

此时假设\(f(t)=\mathrm{Pr}(T=t)\),

\[\alpha(t):=\mathrm{Pr}(T=t|T\ge t)=f(t)/S(t),
\]

可以证明

\[S(t)= \prod_0^t (1-\alpha(s)),
\]

注意, 这里的\(\prod\)个人感觉都没法用极限去理解, 只能用无限(即便是不可数)个1相乘仍为1理解.

不妨设\(f(t)\)仅在\(0<t_1 < t_2 < \cdots\)处非零, 则

\[S(t)=1, \: t\le t_1, \\
S(t)=1-f(t_1)=1-\alpha(t_1), \: t_1 < t \le t_2, \\
\]
\[S(t)=1-f(t_1)-f(t_2)=1-\alpha(t_1)- \alpha(t_2)S(t_2)=(1-\alpha(t_1)(1-\alpha(t_2)), \: t_2 < t \le t_3 \\
\cdots
\]

统一

记连续情况下

\[A(t) = \int_0^t \alpha(s) \mathrm{d}s
\]

离散情况下

\[A(t) =\sum_0^t \alpha(s),
\]

这里的\(\sum\)请用勒贝格积分理解, 二者在实变函数下统一为

\[A(t) = \int_0^t \frac{1}{S(s)} \mathrm{d}S(s).
\]

\(A(t+h)-A(t)\)可以理解为个体在\([t,t+h]\)内死亡的概率, 则

\[S(t)= \lim_{\max |t_i - t_{i-1}| \rightarrow 0} \prod_0^t (1-(A(t_i)-A(t_{i-1}))=:\prod_0^t (1-dA(s))
\]

意思就是, 个体想活过\(t\), 必须前面的每一个阶段都是活着的(严格的推导, 以及极限存在等等不知).

还有在矩阵和马尔可夫上的推广, 一知半解, 就不记录了.

Product Integration的更多相关文章

  1. [ZZ]From QA to Engineering Productivity

    http://googletesting.blogspot.com/2016/03/from-qa-to-engineering-productivity.html In Google’s early ...

  2. CMMI-4中19个PA的大致描述

    组织过程资产库下面有组织级标准过程库, 这个库里一共有19各PA(就是标准过程啦) PA的英文是Process Area       CM(配置管理过程,英文是Configuration Manage ...

  3. Apache Solr vs Elasticsearch

    http://solr-vs-elasticsearch.com/ Apache Solr vs Elasticsearch The Feature Smackdown API Feature Sol ...

  4. CMMI 3级精简并行过程综述

    “精简并行过程”(Simplified Parallel Process,SPP)是基于CMMI以及软件工程和项目管理知识而创作的一种“软件过程改进方法和规范”,它由众多的过程规范和文档模板组成.SP ...

  5. CMMI 2,3,4,5级涉及的过程域(PA)介绍

      CMMI中的PA即Process Area的缩写,中文称为过程域.简单的说就是做好一个事情需要的某一个方面,对于软件开发来说,就是做好软件开发需要的某一个方面. CMMI2.3级共有18个过程域( ...

  6. CMMI能力成熟度模型集成的过程域

    什么是CMMI CMMI全称是Capability Maturity Model Integration, 即能力成熟度模型集成,是由美国国防部(Office of the Secretary of ...

  7. The Business Of Open Source

    http://oss-watch.ac.uk/resources/businessofopensource by Matthew Langham, Indiginox on 3 February 20 ...

  8. Email feedback to product team about TFS and SharePoint Integration 2017.2.15

    SharePoint与Team Foundation Server的集成,一直是许多研发团队所关注的问题. 通过这种集成,开发团队可以实现下面的几个功能: 1.  搭建一个与团队项目集成的门户网站,并 ...

  9. MAGENTO - APACHE SOLR INTEGRATION - PART II (SETUP)

    MAGENTO - APACHE SOLR INTEGRATION - PART II (SETUP) Tue, 03/01/2011 - 18:30 Tweet Development E-Comm ...

随机推荐

  1. E: Unable to fetch some archives, maybe run apt-get update or try with --fix-missing

    解决办法:apt-get update或者apt-get cleanapt-get update 或者 apt-get update --fix-missing问题解析1 source本身的问题 根据 ...

  2. Linux FTP的主动模式与被动模式

    Linux FTP的主动模式与被动模式 一.FTP主被动模式        FTP是文件传输协议的简称,ftp传输协议有着众多的优点所以传输文件时使用ftp协议的软件很多,ftp协议使用的端口是21( ...

  3. 转 Android Lifecycle、ViewModel和LiveData

    转自:https://www.jianshu.com/p/982545e01d0a 1.概述 在I / O '17的时候,其中一个重要的主题是Architecture Components.这是一个官 ...

  4. Virtual functions in derived classes

    In C++, once a member function is declared as a virtual function in a base class, it becomes virtual ...

  5. 重量级&轻量级

    重量级 就是说包的大小,还有就是与个人项目的耦合程度,重量级的框架与项目耦合程度大些 代表EJB容器的服务往往是"买一送三",不要都不行 轻量级 就是相对较小的包,当然与项目的耦合 ...

  6. 【Java 8】Stream中的Pipeline理解

    基于下面一段代码: public static void main(String[] args) { List<String> list = Arrays.asList("123 ...

  7. AOP切入点的配置

    <?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.spr ...

  8. Redis集群断电恢复

    再集群整体断点或关闭后,默认启动集群后,会成为孤立的单点,需要删除每个节点的pid文件,node.conf.并将RDB和AOF文件移动出来,再挨个启动每个节点,并用create创建集群脚本,重新创建集 ...

  9. shell脚本 awk实现实时监控网卡流量

    一.简介 通过第3方工具获得网卡流量,这个大家一定很清楚.其实通过脚本一样可以实现效果.下面是我个人工作中整理的数据.以下是shell脚本统计网卡流量. 现原理: cat /proc/net/dev ...

  10. 优化器统计跟踪(SYS.EXP_HEAD$ SYS.EXP_OBJ$ SYS.EXP_STAT$不)导致表空间 SYSAUX不断增长

    资料来自support文档 ID 2354960.1 环境: aws rds 19c(亚马逊云oracle 数据库) 背景: 在一次查看数据库表段的占用空间大小的时候,无意间发现其中EXP_开头的表占 ...