洛谷 P3431:[POI2005]AUT-The Bus(离散化+DP+树状数组)
题目描述
The streets of Byte City form a regular, chessboardlike network - they are either north-south or west-east directed. We shall call them NS- and WE-streets. Furthermore, each street crosses the whole city. Every NS-street intersects every WE- one and vice versa. The NS-streets are numbered from \(1\) to \(n\), starting from the westernmost. The WE-streets are numbered from \(1\) to \(m\), beginning with the southernmost. Each intersection of the \(i\)'th NS-street with the \(j\)'th WE-street is denoted by a pair of numbers \((i,j)\) (for \(1\le i\le n\), \(1\le j\le m\)).
There is a bus line in Byte City, with intersections serving as bus stops. The bus begins its itinerary by the \((1,1)\) intersection, and finishes by the \((n,m)\) intersection. Moreover, the bus may only travel in the eastern and/or northern direction.
There are passengers awaiting the bus by some of the intersections. The bus driver wants to choose his route in a way that allows him to take as many of them as possible. (We shall make an assumption that the interior of the bus is spacious enough to take all of the awaiting passengers, regardless of the route chosen.)TaskWrite a programme which:
reads from the standard input a description of the road network and the number of passengers waiting at each intersection,finds, how many passengers the bus can take at the most,writes the outcome to the standard output.
Byte City 的街道形成了一个标准的棋盘网络 – 他们要么是北南走向要么就是西东走向. 北南走向的路口从 1 到 n编号, 西东走向的路从1 到 m编号. 每个路口用两个数(i, j) 表示(1 <= i <= n, 1 <= j <= m). Byte City里有一条公交线, 在某一些路口设置了公交站点. 公交车从 (1, 1) 发车, 在(n, m)结束.公交车只能往北或往东走. 现在有一些乘客在某些站点等车. 公交车司机希望在路线中能接到尽量多的乘客.帮他想想怎么才能接到最多的乘客.
输入格式
The first line of the standard input contains three positive integers \(n\), \(m\) and \(k\) - denoting the number of NS-streets, the number of WE-streets and the number of intersections by which the passengers await the bus, respectively \((1\le n\le 10^9, 1\le m\le 10^9, 1\le k\le 10^5)\).
The following \(k\) lines describe the deployment of passengers awaiting the bus, a single line per intersection. In the \((i+1)\)'st line there are three positive integers \(x_i, y_i\) and \(p_i\), separated by single spaces, \(1\le x_i\le n,1\le y_i\le m,1\le p_i\le 10^6\) . A triplet of this form signifies that by the intersection\((x_i,y_i)p_i\) passengers await the bus. Each intersection is described in the input data once at the most. The total number of passengers waiting for the bus does not exceed \(1\ 000\ 000\ 000\).
输出格式
Your programme should write to the standard output one line containing a single integer - the greatest number of passengers the bus can take.
输入输出样例
输入
8 7 11
4 3 4
6 2 4
2 3 2
5 6 1
2 5 2
1 5 5
2 1 1
3 1 1
7 7 1
7 4 2
8 6 2
输出
11
思路
首先想到的是一个\(n\times m\)的DP,但是因为\(n,m\)均为\(10^9\),所以肯定是不行的
可以注意到,虽然\(n,m\)很大,但是点的个数却很少,只有\(10^5\)个,所以可以考虑将点先离散化,这样时间就从\(O(n\times m)降到了O(k^2)\),但是依旧会超时
这时,我们可以将每个点按横坐标升序,如果横坐标相同,纵坐标升序的顺序排序,然后进行DP
状态转移方程:\(dp[i]=max(dp[1],dp[2]...dp[i])+p[i]\)对于\(max(dp[i])\),可以用树状数组来求
代码
#include <bits/stdc++.h>
#define ll long long
#define ull unsigned long long
#define ms(a,b) memset(a,b,sizeof(a))
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int maxn=2e6+10;
const int mod=1e9+7;
const int maxm=1e3+10;
using namespace std;
struct wzy
{
int x,y,s;
}p[maxn];
int c[maxn];
int mapx[maxn],mapy[maxn];
bool cmp(wzy u,wzy v)
{
if(u.x==v.x)
return u.y<v.y;
return u.x<v.x;
}
int lowbit(int x)
{
return x&(-x);
}
void update(int place,int num,int n)
{
while(place<=n)
{
c[place]=max(c[place],num);
place+=lowbit(place);
}
}
int query(int place)
{
int ans=0;
while(place>0)
{
ans=max(ans,c[place]);
place-=lowbit(place);
}
return ans;
}
int dp[maxn];
int main(int argc, char const *argv[])
{
#ifndef ONLINE_JUDGE
freopen("/home/wzy/in.txt", "r", stdin);
freopen("/home/wzy/out.txt", "w", stdout);
srand((unsigned int)time(NULL));
#endif
ios::sync_with_stdio(false);
cin.tie(0);
int n,m,k;
cin>>n>>m>>k;
for(int i=1;i<=k;i++)
{
cin>>p[i].x>>p[i].y>>p[i].s;
mapx[i]=p[i].x;
mapy[i]=p[i].y;
}
// 离散化
sort(mapx+1,mapx+1+k);
sort(mapy+1,mapy+1+k);
int numx,numy;
numx=numy=k;
numx=unique(mapx+1,mapx+1+numx)-(mapx+1);
numy=unique(mapy+1,mapy+1+numy)-(mapy+1);
for(int i=1;i<=k;i++)
{
p[i].x=lower_bound(mapx+1,mapx+numx+1,p[i].x)-mapx;
p[i].y=lower_bound(mapy+1,mapy+numy+1,p[i].y)-mapy;
}
sort(p+1,p+1+k,cmp);
for(int i=1;i<=k;i++)
{
dp[i]=query(p[i].y)+p[i].s;
update(p[i].y,dp[i],k);
}
int ans=0;
for(int i=1;i<=k;i++)
ans=max(ans,dp[i]);
cout<<ans<<endl;
#ifndef ONLINE_JUDGE
cerr<<"Time elapsed: "<<1.0*clock()/CLOCKS_PER_SEC<<" s."<<endl;
#endif
return 0;
}
洛谷 P3431:[POI2005]AUT-The Bus(离散化+DP+树状数组)的更多相关文章
- Codeforces 777E(离散化+dp+树状数组或线段树维护最大值)
E. Hanoi Factory time limit per test 1 second memory limit per test 256 megabytes input standard inp ...
- 洛谷 P1975 [国家集训队]排队 Lebal:块内排序+树状数组
题目描述 排排坐,吃果果,生果甜嗦嗦,大家笑呵呵.你一个,我一个,大的分给你,小的留给我,吃完果果唱支歌,大家乐和和. 红星幼儿园的小朋友们排起了长长地队伍,准备吃果果.不过因为小朋友们的身高有所区别 ...
- 洛谷 P2038 无线网络发射器选址 —— 二维树状数组
题目:https://www.luogu.org/problemnew/show/P2038 大水题暴露出我的愚蠢. 用二维树状数组,然而居然忘了它应该那样写,调了一个小时: 正方形可以超出外面,只要 ...
- 洛谷 P1972"[SDOI2009]HH的项链"(离线+树状数组 or 在线+主席树)
传送门 •题意 给你一个包含 n 个数的数组 $a$: 有 m 此操作,每次操作求区间 [l,r] 中不同数的个数: •题解(离线+树状数组) 以样例 $[1,2,3,4,3,5]$ 为例,求解区间 ...
- cf 61 E. Enemy is weak 离散化+树状数组
题意: 给出一个数组,数组的每一个元素都是不一样的,求出对于3个数组下标 i, j, k such that i < j < k and ai > aj > ak where ...
- POJ 2299 Ultra-QuickSort (离散化)+【树状数组】
<题目链接> 题目大意: 给你一段序列,问你如果每次只交换该序列相邻的两个元素,最少需要交换多少步才能够使该序列变为升序排列. 解题分析: 不难发现,其实本题就是让我们求原始序列的逆序对, ...
- POJ 2299 Ultra-QuickSort 离散化加树状数组求逆序对
http://poj.org/problem?id=2299 题意:求逆序对 题解:用树状数组.每读入一个数x,另a[x]=1.那么a数列的前缀和s[x]即为x前面(或者说,再x之前读入)小于x的个数 ...
- CodeForces - 220B Little Elephant and Array (莫队+离散化 / 离线树状数组)
题意:N个数,M个查询,求[Li,Ri]区间内出现次数等于其数值大小的数的个数. 分析:用莫队处理离线问题是一种解决方案.但ai的范围可达到1e9,所以需要离散化预处理.每次区间向外扩的更新的过程中, ...
- codeforces 652D D. Nested Segments(离散化+sort+树状数组)
题目链接: D. Nested Segments time limit per test 2 seconds memory limit per test 256 megabytes input sta ...
随机推荐
- Demo02一千以内的水仙花数
package 习题集2;//1000以内的水仙花数public class Demo02 { public static void main(String[] args) { int i = 100 ...
- 禁止点击、禁止button触发【c#】
bts.Attributes["onclick"] = "return false; ";
- hadoop/spark面试题
总结于网络 转自:https://www.cnblogs.com/jchubby/p/5449379.html 1.简答说一下hadoop的map-reduce编程模型 首先map task会从本地文 ...
- rem.js,移动多终端适配
window.onload = function(){ /*720代表设计师给的设计稿的宽度,你的设计稿是多少,就写多少;100代表换算比例,这里写100是 为了以后好算,比如,你测量的一个宽度是10 ...
- Linux基础命令---mysql
mysql mysql是一个简单的sql shell,它可以用来管理mysql数据库. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.Fedora. 1.语法 m ...
- GO 通过进程号输出运行运行信息
操作系统应用可以使用PID来查找关于进程本身的信息.当进程失败时获取到的PID就非常有价值,这样就可以使用PID跟踪整个系统中的系统日志,如/var/log/messages./var/log/sys ...
- oracle first_value,last_valus
first_value和last_value 是用来去分析函数窗口中对应列的第一个值和最后一个值的函数. 语法如下: first_value(col [ignore NULLS]) over([PAR ...
- Spring Boot发布war包流程
1.修改web model的pom.xml <packaging>war</packaging> SpringBoot默认发布的都是jar,因此要修改默认的打包方式jar为wa ...
- ES6 object.defineProperty
Object.defineProperty() 方法会直接在一个对象上定义一个新属性,或者修改一个对象的现有属性, 并返回这个对象. Object.defineProperty(obj, prop, ...
- 如何基于 Docker 快速搭建 Springboot + Mysql + Redis 项目
目录 前言 项目目录 搭建项目 1. docker安装启动mysql以及redis 1.1 安装mysql 1.2 安装redis 2. 初始化数据库 3.创建项目 4.初始化代码 4.1 全局配置文 ...