RT-Thread学习2 —— 内存管理学习记录
RT-Thread学习2 —— 内存管理学习记录1
小内存管理算法(mem.c)
1. 小内存管理法:
小内存管理算法是一个简单的内存分配算法。初始时,它是一块大的内存。当需要分配内存块时,将从这个大的内存块上分割出相匹配的内存块,然后把分割出来的空闲内存块还回给堆管理系统中。每个内存块都包含一个管理用的数据头,通过这个头把使用块与空闲块用双向链表的方式链接起来,如下图所示:

2. 两大数据结构体

rt_samll_mem:记录整个内存对象的基本信息
rt_samll_mem_item:记录各个内存块的使用情况
3. 初始化函数:rt_smem_init
在函数参数合法的情况下执行后的初始化内存结构大致如下图所示:

4. rt_smem_alloc函数和rt_smem_realloc函数
/**
* @brief Allocate a block of memory with a minimum of 'size' bytes.
*
* @param m the small memory management object.
*
* @param size is the minimum size of the requested block in bytes.
*
* @return the pointer to allocated memory or NULL if no free memory was found.
*/
void *rt_smem_alloc(rt_smem_t m, rt_size_t size)
{
rt_size_t ptr, ptr2;
struct rt_small_mem_item *mem, *mem2;
struct rt_small_mem *small_mem;
if (size == 0)
return RT_NULL;
RT_ASSERT(m != RT_NULL);
RT_ASSERT(rt_object_get_type(&m->parent) == RT_Object_Class_Memory);
RT_ASSERT(rt_object_is_systemobject(&m->parent));
if (size != RT_ALIGN(size, RT_ALIGN_SIZE))
RT_DEBUG_LOG(RT_DEBUG_MEM, ("malloc size %d, but align to %d\n",
size, RT_ALIGN(size, RT_ALIGN_SIZE)));
else
RT_DEBUG_LOG(RT_DEBUG_MEM, ("malloc size %d\n", size));
small_mem = (struct rt_small_mem *)m;
/* alignment size */
size = RT_ALIGN(size, RT_ALIGN_SIZE);
//判断申请的空间是不是大于整个内存的空间
if (size > small_mem->mem_size_aligned)
{
RT_DEBUG_LOG(RT_DEBUG_MEM, ("no memory\n"));
return RT_NULL;
}
//确保申请的空间最小是对齐size的大小
/* every data block must be at least MIN_SIZE_ALIGNED long */
if (size < MIN_SIZE_ALIGNED)
size = MIN_SIZE_ALIGNED;
//遍历每一个item
for (ptr = (rt_uint8_t *)small_mem->lfree - small_mem->heap_ptr;
ptr <= small_mem->mem_size_aligned - size;
ptr = ((struct rt_small_mem_item *)&small_mem->heap_ptr[ptr])->next)
{
mem = (struct rt_small_mem_item *)&small_mem->heap_ptr[ptr];
//找空闲块并且这个空闲块的大小比要申请的大的块
if ((!MEM_ISUSED(mem)) && (mem->next - (ptr + SIZEOF_STRUCT_MEM)) >= size)
{
/* mem is not used and at least perfect fit is possible:
* mem->next - (ptr + SIZEOF_STRUCT_MEM) gives us the 'user data size' of mem */
//如果当前的item后面跟的内存块比要申请的空间加其他描述信息的空间大,那就符合条件
if (mem->next - (ptr + SIZEOF_STRUCT_MEM) >=
(size + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED))
{
/* (in addition to the above, we test if another struct rt_small_mem_item (SIZEOF_STRUCT_MEM) containing
* at least MIN_SIZE_ALIGNED of data also fits in the 'user data space' of 'mem')
* -> split large block, create empty remainder,
* remainder must be large enough to contain MIN_SIZE_ALIGNED data: if
* mem->next - (ptr + (2*SIZEOF_STRUCT_MEM)) == size,
* struct rt_small_mem_item would fit in but no data between mem2 and mem2->next
* @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty
* region that couldn't hold data, but when mem->next gets freed,
* the 2 regions would be combined, resulting in more free memory
*/
//ptr2 指向当前信息块加实际内存块后的地址(下一个空闲块要写入对应的信息块)
ptr2 = ptr + SIZEOF_STRUCT_MEM + size;
//mem2为下一个信息块赋值
/* create mem2 struct */
mem2 = (struct rt_small_mem_item *)&small_mem->heap_ptr[ptr2];
mem2->pool_ptr = MEM_FREED();
mem2->next = mem->next;
mem2->prev = ptr;
#ifdef RT_USING_MEMTRACE
rt_smem_setname(mem2, " ");
#endif /* RT_USING_MEMTRACE */
//设置当前信息块的下一个为pt2
/* and insert it between mem and mem->next */
mem->next = ptr2;
//如果不是初始时候的第一块那需要把end of heap的pre指向ptr2
if (mem2->next != small_mem->mem_size_aligned + SIZEOF_STRUCT_MEM)
{
((struct rt_small_mem_item *)&small_mem->heap_ptr[mem2->next])->prev = ptr2;
}
small_mem->parent.used += (size + SIZEOF_STRUCT_MEM);
if (small_mem->parent.max < small_mem->parent.used)
small_mem->parent.max = small_mem->parent.used;
}
else
{
/* (a mem2 struct does no fit into the user data space of mem and mem->next will always
* be used at this point: if not we have 2 unused structs in a row, plug_holes should have
* take care of this).
* -> near fit or excact fit: do not split, no mem2 creation
* also can't move mem->next directly behind mem, since mem->next
* will always be used at this point!
*/
//如果不够长,将位置占上
small_mem->parent.used += mem->next - ((rt_uint8_t *)mem - small_mem->heap_ptr);
if (small_mem->parent.max < small_mem->parent.used)
small_mem->parent.max = small_mem->parent.used;
}
//设置当前要申请的内存的信息块
/* set small memory object */
mem->pool_ptr = MEM_USED();
#ifdef RT_USING_MEMTRACE
if (rt_thread_self())
rt_smem_setname(mem, rt_thread_self()->name);
else
rt_smem_setname(mem, "NONE");
#endif /* RT_USING_MEMTRACE */
//将lfree指向下一个空闲的位置
if (mem == small_mem->lfree)
{
/* Find next free block after mem and update lowest free pointer */
while (MEM_ISUSED(small_mem->lfree) && small_mem->lfree != small_mem->heap_end)
small_mem->lfree = (struct rt_small_mem_item *)&small_mem->heap_ptr[small_mem->lfree->next];
RT_ASSERT(((small_mem->lfree == small_mem->heap_end) || (!MEM_ISUSED(small_mem->lfree))));
}
RT_ASSERT((rt_ubase_t)mem + SIZEOF_STRUCT_MEM + size <= (rt_ubase_t)small_mem->heap_end);
RT_ASSERT((rt_ubase_t)((rt_uint8_t *)mem + SIZEOF_STRUCT_MEM) % RT_ALIGN_SIZE == 0);
RT_ASSERT((((rt_ubase_t)mem) & (RT_ALIGN_SIZE - 1)) == 0);
RT_DEBUG_LOG(RT_DEBUG_MEM,
("allocate memory at 0x%x, size: %d\n",
(rt_ubase_t)((rt_uint8_t *)mem + SIZEOF_STRUCT_MEM),
(rt_ubase_t)(mem->next - ((rt_uint8_t *)mem - small_mem->heap_ptr))));
//返回的是真实可以操作数据的地址(前面会又一个信息头)
/* return the memory data except mem struct */
return (rt_uint8_t *)mem + SIZEOF_STRUCT_MEM;
}
}
return RT_NULL;
}
/**
* @brief This function will change the size of previously allocated memory block.
*
* @param m the small memory management object.
*
* @param rmem is the pointer to memory allocated by rt_mem_alloc.
*
* @param newsize is the required new size.
*
* @return the changed memory block address.
*/
void *rt_smem_realloc(rt_smem_t m, void *rmem, rt_size_t newsize)
{
rt_size_t size;
rt_size_t ptr, ptr2;
struct rt_small_mem_item *mem, *mem2;
struct rt_small_mem *small_mem;
void *nmem;
RT_ASSERT(m != RT_NULL);
RT_ASSERT(rt_object_get_type(&m->parent) == RT_Object_Class_Memory);
RT_ASSERT(rt_object_is_systemobject(&m->parent));
small_mem = (struct rt_small_mem *)m;
/* alignment size */
newsize = RT_ALIGN(newsize, RT_ALIGN_SIZE);
//新申请的比总空间大
if (newsize > small_mem->mem_size_aligned)
{
RT_DEBUG_LOG(RT_DEBUG_MEM, ("realloc: out of memory\n"));
return RT_NULL;
}
//新申请的大小是0
else if (newsize == 0)
{
rt_smem_free(rmem);
return RT_NULL;
}
//地址还没allocate
/* allocate a new memory block */
if (rmem == RT_NULL)
return rt_smem_alloc(&small_mem->parent, newsize);
RT_ASSERT((((rt_ubase_t)rmem) & (RT_ALIGN_SIZE - 1)) == 0);
RT_ASSERT((rt_uint8_t *)rmem >= (rt_uint8_t *)small_mem->heap_ptr);
RT_ASSERT((rt_uint8_t *)rmem < (rt_uint8_t *)small_mem->heap_end);
//取出申请内存的信息块
mem = (struct rt_small_mem_item *)((rt_uint8_t *)rmem - SIZEOF_STRUCT_MEM);
//计算当前信息块的大小
/* current memory block size */
ptr = (rt_uint8_t *)mem - small_mem->heap_ptr;
size = mem->next - ptr - SIZEOF_STRUCT_MEM;
if (size == newsize)
{
/* the size is the same as */
return rmem;
}
//当前信息块比新申请的大
if (newsize + SIZEOF_STRUCT_MEM + MIN_SIZE < size)
{
/* split memory block */
small_mem->parent.used -= (size - newsize);
ptr2 = ptr + SIZEOF_STRUCT_MEM + newsize;
mem2 = (struct rt_small_mem_item *)&small_mem->heap_ptr[ptr2];
mem2->pool_ptr = MEM_FREED();
mem2->next = mem->next;
mem2->prev = ptr;
#ifdef RT_USING_MEMTRACE
rt_smem_setname(mem2, " ");
#endif /* RT_USING_MEMTRACE */
mem->next = ptr2;
if (mem2->next != small_mem->mem_size_aligned + SIZEOF_STRUCT_MEM)
{
((struct rt_small_mem_item *)&small_mem->heap_ptr[mem2->next])->prev = ptr2;
}
if (mem2 < small_mem->lfree)
{
/* the splited struct is now the lowest */
small_mem->lfree = mem2;
}
plug_holes(small_mem, mem2);
return rmem;
}
/* expand memory */
nmem = rt_smem_alloc(&small_mem->parent, newsize);
if (nmem != RT_NULL) /* check memory */
{
rt_memcpy(nmem, rmem, size < newsize ? size : newsize);
rt_smem_free(rmem);
}
return nmem;
}
RTM_EXPORT(rt_smem_realloc);
RT-Thread学习2 —— 内存管理学习记录的更多相关文章
- java虚拟机学习-JVM内存管理:深入Java内存区域与OOM(3)
概述 Java与C++之间有一堵由内存动态分配和垃圾收集技术所围成的高墙,墙外面的人想进去,墙里面的人却想出来. 对于从事C.C++程序开发的开发人员来说,在内存管理领域,他们即是拥有最高权力的皇帝又 ...
- C++内存管理学习笔记(5)
/****************************************************************/ /* 学习是合作和分享式的! /* Auth ...
- C++内存管理学习笔记(7)
/****************************************************************/ /* 学习是合作和分享式的! /* Auth ...
- C++内存管理学习笔记(6)
/****************************************************************/ /* 学习是合作和分享式的! /* Auth ...
- java虚拟机学习-JVM内存管理:深入垃圾收集器与内存分配策略(4)
Java与C++之间有一堵由内存动态分配和垃圾收集技术所围成的高墙,墙外面的人想进去,墙里面的人却想出来. 概述: 说起垃圾收集(Garbage Collection,下文简称GC),大部分人都把这项 ...
- python学习Day9 内存管理
复习 :文件处理 1. 操作文件的三步骤:-- 打开文件:此时该文件在硬盘的空间被操作系统持有 | 文件对象被应用程序持用 -- 操作文件:读写操作 -- 释放文件:释放操作系统对文件在硬盘间的持有 ...
- Linux内存管理学习资料
下面是Linux内存管理学习的一些资料. 博客 mlock() and mlockall() system calls. All about Linux swap space 逆向映射的演进 Linu ...
- C++内存管理学习笔记(4)
/****************************************************************/ /* 学习是合作和分享式的! /* Auth ...
- C++内存管理学习笔记(3)
/****************************************************************/ /* 学习是合作和分享式的! /* Auth ...
随机推荐
- ☕【Java深层系列】「并发编程系列」深入分析和研究MappedByteBuffer的实现原理和开发指南
前言介绍 在Java编程语言中,操作文件IO的时候,通常采用BufferedReader,BufferedInputStream等带缓冲的IO类处理大文件,不过java nio中引入了一种基于Mapp ...
- python网络爬虫-动态网页抓取(五)
动态抓取的实例 在开始爬虫之前,我们需要了解一下Ajax(异步请求).它的价值在于在与后台进行少量的数据交换就可以使网页实现异步更新. 如果使用Ajax加载的动态网页抓取,有两种方法: 通过浏览器审查 ...
- 创建一个python类 ,self init相关参数的简单介绍
一 创建 ''' 一 使用python 语法 创建一个类, 探究self 是干啥的 1 创建一个对象 car 2 写入两个行参 3 定义两个方法 ''' class Car(): ''' 二 init ...
- Spring源码-IOC部分-容器初始化过程【2】
实验环境:spring-framework-5.0.2.jdk8.gradle4.3.1 Spring源码-IOC部分-容器简介[1] Spring源码-IOC部分-容器初始化过程[2] Spring ...
- 如何在pyqt中实现窗口磨砂效果
磨砂效果的实现思路 这两周一直在思考怎么在pyqt上实现窗口磨砂效果,网上搜了一圈,全都是 C++ 的实现方法.正好今天查python的官方文档的时候看到了 ctypes 里面的 HWND,想想倒不如 ...
- Network Kit与三七游戏共创流畅游戏体验,无惧网络延迟
本文分享于HMS Core联盟论坛<[开发者说]无惧高网络吞吐量,HMS Core Network Kit与三七游戏共创流畅游戏体验>的采访整理. 三七游戏拥有<斗罗大陆·魂师对决& ...
- Objects、Arrays、Collectors、System工具类
Objects类 定义 位于java.util包中,JDK1.7以后操作对象的类,对对象的空,对象是否相等进行判断. 常用方法 1.public static boolean equals(Objec ...
- AFN框架
0.AFN框架基本使用 0.1 AFN内部结构 AFN结构体 - NSURLConnection + AFURLConnectionOperation(已经被废弃) + AFHTTPRequestOp ...
- table 增加或删除一行
转载请注明来源:https://www.cnblogs.com/hookjc/ <HTML><SCRIPT LANGUAGE="JScript">funct ...
- Ubuntu安装 php + apache + mysql
转载请注明来源:https://www.cnblogs.com/hookjc/ 1.安装SSH(必须) sudo apt-get install ssh 2.安装MySQL(虽然现在最新版为5.1,但 ...