LuoguP2378 因式分解II 题解
Content
输入一个多项式 \(x^2+ax+b\)(不保证 \(a,b\neq0\)),请对这个多项式进行因式分解(形式为 \((x-x_1)(x-x_2)\),其中 \(x_1>x_2\))。
数据范围:\(a,b<2^{31}\)。
Solution
这道题目看上去很简单,做起来却有很多的细节要注意。
首先,我们可以得到一个大致的思路:得到 \(a,b\) 之后利用求根公式求出 \(x_1,x_2\):
\]
当然,这是按照题目进行变化后得到的式子,我想你们应该都熟悉这个:\(\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}\),但因为保证了二次项系数是 \(1\),所以没什么必要。
那么完了以后,我们的因式分解的结果就是 \((x-x_1)(x-x_2)\),当然,首先如果 \(x_1<x_2\),就得要交换。输出的时候分以下三种情况讨论:
- \(x<0\),此时因为前面已经带了负号,所以直接用
printf("(x%d)", x)就好。 - \(x=0\),此时直接输出
x。 - \(x>0\),此时用
printf("(x+%d)", x)输出。
总体来讲就是以上这些操作,还需注意一下将 \(a,b\) 从字符串中提取出来的问题,具体请读者看代码自行理解。
Code
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <iostream>
using namespace std;
string s;
double a, b, flagx, f, now;
void print(int xx) {
if(xx < 0) printf("(x%d)", xx);
else if(!xx) printf("x");
else printf("(x+%d)", xx);
}
int main() {
cin >> s;
int n = s.size();
f = 1;
for(int i = 3; i < n; ++i)
if(s[i] == 'x') flagx = 1;
if(!flagx) {
now = 0;
for(int i = 3; i < n; ++i) {
if(s[i] == '-') f *= -1;
else if(isdigit(s[i])) now = now * 10 + s[i] - '0';
}
b = f * now;
} else {
now = 0;
for(int i = 3; i < n; ++i) {
if(s[i] == 'x' && i == 3) {
a = 1;
now = 0, f = 1;
} else if(s[i] == 'x' && i > 3) {
a = now * f;
now = 0; f = 1;
} else if(s[i] == '-') f *= -1;
else if(isdigit(s[i])) now = now * 10 + s[i] - '0';
// printf("now=%d\n\n", now);
}
b = f * now;
}
double x1 = -(-a + sqrt(a * a - 4 * b)) / 2, x2 = -(-a - sqrt(a * a - 4 * b)) / 2;
// printf("%d %d %d %d\n", a, b, x1, x2);
if(x1 == x2) {
print(x1);
printf("^2");
} else {
if(x1 < x2) swap(x1, x2);
print(x1), print(x2);
}
return 0;
}
LuoguP2378 因式分解II 题解的更多相关文章
- Leetcode 137. 只出现一次的数字 II - 题解
Leetcode 137. 只出现一次的数字 II - 题解 137. Single Number II 在线提交: https://leetcode.com/problems/single-numb ...
- 洛谷P3412 仓鼠找$Sugar\ II$题解(期望+统计论?)
洛谷P3412 仓鼠找\(Sugar\ II\)题解(期望+统计论?) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1327573 原题链接:洛谷P3412 ...
- 洛谷10月月赛II题解
[咻咻咻] (https://www.luogu.org/contestnew/show/11616) 令人窒息的洛谷月赛,即将参加NOIp的我竟然只会一道题(也可以说一道也不会),最终145的我只能 ...
- Blocked Billboard II题解--模拟到崩溃的模拟
前言 比赛真的状态不好(腐了一小会),导致差点爆0. 这个题解真的是在非常非常专注下写出来的,要不然真的心态崩. 题目 题目描述 奶牛Bassie想要覆盖一大块广告牌,她在之前已经覆盖了一小部分广告牌 ...
- HDU 2236 无题II 题解
题目 这是一个简单的游戏,在一个n*n的矩阵中,找n个数使得这n个数都在不同的行和列里并且要求这n个数中的最大值和最小值的差值最小. 输入格式 输入一个整数\(T\)表示\(T\)组数据. 对于每组数 ...
- COGS 2437 暗之链锁 II 题解
[题意] 给出一个有n个点的无向图,其中有n-1条主要边且这些主要边构成一棵树,此外还有m条其他边,求斩断原图的一条主要边和k条其他边使得图不连通的方案数mod109+7的值. 注意,就算你切断一条主 ...
- [LeetCode] Trapping Rain Water II 题解
题意 题目 思路 我一开始想的时候只考虑到一个结点周围的边界的情况,并没有考虑到边界的高度其实影响到所有的结点盛水的高度. 我们可以发现,中间是否能够盛水取决于边界是否足够高于里面的高度,所以这必然是 ...
- 洛谷P1288 取数游戏II 题解 博弈论
题目链接:https://www.luogu.org/problem/P1288 首先,如果你的一边的边是 \(0\) ,那么你肯定走另一边. 那么你走另一边绝对不能让这条边有剩余,因为这条边有剩余的 ...
- 洛谷P4860 Roy&October之取石子II 题解 博弈论
题目链接:https://www.luogu.org/problem/P4860 和<P4018 Roy&October之取石子>一样的推导思路,去找循环节. 可以发现:只要不能被 ...
随机推荐
- [bzoj1177]Oil
考虑将三个矩形按某种方式划分为再三个大矩形中找最大值,容易发现只有6种划分方式,分为两类:1.4种,考虑第一条横/竖和第二条在第一条的两侧,这一类情况只需要预处理出左上/左下/右上/右下的最大子矩阵即 ...
- 类的访问权限和Object
1.访问控制权限 1.1.访问控制权限都有哪些? 4个. private 私有 public 公开 protected 受保护 默认 1.2.以上的4个访问控制权限:控制的范围是什么? private ...
- Jmeter——变量嵌套函数使用(__V)案例分析
jmeter版本:5.3 __V官方函数解释: (https://jmeter.apache.org/usermanual/functions.html#__V) 图1-1 解决问题:实现字符串拼接 ...
- 实践案例1-利用低代码开发平台Odoo快速构建律师事务所管理系统
今年10月份中旬的时候,有一段时间没联系的中学同学,我跟他关系比较好,突然打电话给我,希望我给他夫人的律所开发一个小系统.记得十几年前,当他还在他叔叔公司上班的,他是负责销售的,我们几乎每周都碰面,那 ...
- 洛谷 P3239 [HNOI2015]亚瑟王(期望+dp)
题面传送门 感觉是道挺好的题,可惜当时没写题解来着的? 根据期望的线性公式,我们求出每个卡牌被发动的概率 \(q_i\),然后 \[ans=\sum\limits_{i=1}^np_id_i \] 于 ...
- Codeforces 536D - Tavas in Kansas(dp)
Codeforces 题目传送门 & 洛谷题目传送门 其实这题本该 2019 年 12 月就 AC 的(详情请见 ycx 发此题题解的时间),然鹅鸽到了现在-- 首先以 \(s,t\) 分别为 ...
- Oracle——listener数据库监听 lsnrctl
lsnrctl(Listener Control)是一个SQL*Net工具,用于控制数据库listener,这个工具提供了命令用于控制listener的启动.停止,查看listener的状态,改变li ...
- 自定义char类型字符,django中事务
自定义char类型字符 # 自定义char类型,继承Field父类 class MyCharField(Field): def __init__(self, max_length, *args, ** ...
- Machine Learning读书会,面试&算法讲座,算法公开课,创业活动,算法班集锦
Machine Learning读书会,面试&算法讲座,算法公开课,创业活动,算法班集锦 近期活动: 2014年9月3日,第8次西安面试&算法讲座视频 + PPT 的下载地址:http ...
- SpringBoot整合Shiro 一:搭建环境
Java项目的安全框架一般使用 shiro 与 spring security 具体怎么选择可以参考文章:安全框架 Shiro 和 Spring Security 如何选择 我这里选择使用Shiro ...