LuoguP2378 因式分解II 题解
Content
输入一个多项式 \(x^2+ax+b\)(不保证 \(a,b\neq0\)),请对这个多项式进行因式分解(形式为 \((x-x_1)(x-x_2)\),其中 \(x_1>x_2\))。
数据范围:\(a,b<2^{31}\)。
Solution
这道题目看上去很简单,做起来却有很多的细节要注意。
首先,我们可以得到一个大致的思路:得到 \(a,b\) 之后利用求根公式求出 \(x_1,x_2\):
\]
当然,这是按照题目进行变化后得到的式子,我想你们应该都熟悉这个:\(\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}\),但因为保证了二次项系数是 \(1\),所以没什么必要。
那么完了以后,我们的因式分解的结果就是 \((x-x_1)(x-x_2)\),当然,首先如果 \(x_1<x_2\),就得要交换。输出的时候分以下三种情况讨论:
- \(x<0\),此时因为前面已经带了负号,所以直接用
printf("(x%d)", x)
就好。 - \(x=0\),此时直接输出
x
。 - \(x>0\),此时用
printf("(x+%d)", x)
输出。
总体来讲就是以上这些操作,还需注意一下将 \(a,b\) 从字符串中提取出来的问题,具体请读者看代码自行理解。
Code
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <iostream>
using namespace std;
string s;
double a, b, flagx, f, now;
void print(int xx) {
if(xx < 0) printf("(x%d)", xx);
else if(!xx) printf("x");
else printf("(x+%d)", xx);
}
int main() {
cin >> s;
int n = s.size();
f = 1;
for(int i = 3; i < n; ++i)
if(s[i] == 'x') flagx = 1;
if(!flagx) {
now = 0;
for(int i = 3; i < n; ++i) {
if(s[i] == '-') f *= -1;
else if(isdigit(s[i])) now = now * 10 + s[i] - '0';
}
b = f * now;
} else {
now = 0;
for(int i = 3; i < n; ++i) {
if(s[i] == 'x' && i == 3) {
a = 1;
now = 0, f = 1;
} else if(s[i] == 'x' && i > 3) {
a = now * f;
now = 0; f = 1;
} else if(s[i] == '-') f *= -1;
else if(isdigit(s[i])) now = now * 10 + s[i] - '0';
// printf("now=%d\n\n", now);
}
b = f * now;
}
double x1 = -(-a + sqrt(a * a - 4 * b)) / 2, x2 = -(-a - sqrt(a * a - 4 * b)) / 2;
// printf("%d %d %d %d\n", a, b, x1, x2);
if(x1 == x2) {
print(x1);
printf("^2");
} else {
if(x1 < x2) swap(x1, x2);
print(x1), print(x2);
}
return 0;
}
LuoguP2378 因式分解II 题解的更多相关文章
- Leetcode 137. 只出现一次的数字 II - 题解
Leetcode 137. 只出现一次的数字 II - 题解 137. Single Number II 在线提交: https://leetcode.com/problems/single-numb ...
- 洛谷P3412 仓鼠找$Sugar\ II$题解(期望+统计论?)
洛谷P3412 仓鼠找\(Sugar\ II\)题解(期望+统计论?) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1327573 原题链接:洛谷P3412 ...
- 洛谷10月月赛II题解
[咻咻咻] (https://www.luogu.org/contestnew/show/11616) 令人窒息的洛谷月赛,即将参加NOIp的我竟然只会一道题(也可以说一道也不会),最终145的我只能 ...
- Blocked Billboard II题解--模拟到崩溃的模拟
前言 比赛真的状态不好(腐了一小会),导致差点爆0. 这个题解真的是在非常非常专注下写出来的,要不然真的心态崩. 题目 题目描述 奶牛Bassie想要覆盖一大块广告牌,她在之前已经覆盖了一小部分广告牌 ...
- HDU 2236 无题II 题解
题目 这是一个简单的游戏,在一个n*n的矩阵中,找n个数使得这n个数都在不同的行和列里并且要求这n个数中的最大值和最小值的差值最小. 输入格式 输入一个整数\(T\)表示\(T\)组数据. 对于每组数 ...
- COGS 2437 暗之链锁 II 题解
[题意] 给出一个有n个点的无向图,其中有n-1条主要边且这些主要边构成一棵树,此外还有m条其他边,求斩断原图的一条主要边和k条其他边使得图不连通的方案数mod109+7的值. 注意,就算你切断一条主 ...
- [LeetCode] Trapping Rain Water II 题解
题意 题目 思路 我一开始想的时候只考虑到一个结点周围的边界的情况,并没有考虑到边界的高度其实影响到所有的结点盛水的高度. 我们可以发现,中间是否能够盛水取决于边界是否足够高于里面的高度,所以这必然是 ...
- 洛谷P1288 取数游戏II 题解 博弈论
题目链接:https://www.luogu.org/problem/P1288 首先,如果你的一边的边是 \(0\) ,那么你肯定走另一边. 那么你走另一边绝对不能让这条边有剩余,因为这条边有剩余的 ...
- 洛谷P4860 Roy&October之取石子II 题解 博弈论
题目链接:https://www.luogu.org/problem/P4860 和<P4018 Roy&October之取石子>一样的推导思路,去找循环节. 可以发现:只要不能被 ...
随机推荐
- 数字逻辑实践3->EDA技术与Verilog设计
本文属于EDA技术概述类文章 1 EDA技术及其发展 概念 EDA(Electronic Design Automation),指的是以计算机为工作平台,以EDA软件工具为开发环境,以PLD期间或者A ...
- 关于 KB/KiB、MB/MiB
ermmm--怎么说呢,这个非常容易搞混,那就写篇 blog 澄清一下吧-- 首先贴上百度百科的官方定义 根据国际单位制标准,1KB = 1000B(字节, Byte). 根据按照 IEC 命名标准 ...
- BZOJ 3043 [Poetize6] IncDec Sequence
题目描述 给定一个长度为n的数列$a_1,a_2,--,a_n$,每次可以选择一个区间[l,r],使这个区间内的数都加1或者都减1. 请问至少需要多少次操作才能使数列中的所有数都一样,并求出在保证最 ...
- 富集分析DAVID、Metascape、Enrichr、ClueGO
前言 一般我们挑出一堆感兴趣的基因想临时看看它们的功能,需要做个富集分析.虽然公司买了最新版的数据库,如KEGG,但在集群跑下来嫌麻烦.这时网页在线或者本地化工具派上用场了. DAVID DAVID地 ...
- 作业帮上万个 CronJob 和在线业务混部,如何解决弱隔离问题并进一步提升资源利用率?
作者 吕亚霖,作业帮基础架构 - 架构研发团队负责人.负责技术中台和基础架构工作.在作业帮期间主导了云原生架构演进.推动实施容器化改造.服务治理.GO 微服务框架.DevOps 的落地实践. 别路,作 ...
- Identity Server 4 从入门到落地(六)—— 简单的单页面客户端
前面的部分: Identity Server 4 从入门到落地(一)-- 从IdentityServer4.Admin开始 Identity Server 4 从入门到落地(二)-- 理解授权码模式 ...
- A Child's History of England.25
It was a September morning, and the sun was rising, when the King was awakened from slumber by the s ...
- Hbase(一)【入门安装及高可用】
目录 一.Zookeeper正常部署 二.Hadoop正常部署 三.Hbase部署 1.下载 2.解压 3.相关配置 4.分发文件 5.启动.关闭 6.验证 四.HMaster的高可用 一.Zooke ...
- java加密方式
加密,是以某种特殊的算法改变原有的信息数据,使得未授权的用户即使获得了已加密的信息,但因不知解密的方法,仍然无法了解信息的内容.大体上分为双向加密和单向加密,而双向加密又分为对称加密和非对称加密(有些 ...
- mysql触发器实例说明
触发器是一类特殊的事务 ,可以监视某种数据操作(insert/update/delete),并触发相关操作(insert/update/delete). 看以下事件: 完成下单与减少库存的逻辑 Ins ...