Content

给定正整数 \(k\),找到所有的正整数 \(x \geqslant y\),使得 \(\frac{1}{k}=\frac{1}{x}+\frac{1}{y}\)。

数据范围:\(0<k\leqslant 10^4\)。

Solution

我们考虑直接暴力枚举,那么如何枚举?又如何确定枚举的上界与下界?

由于题目中给出的要求 \(x\geqslant y\),因此我们可以考虑枚举 \(y\),然后显然要使得 \(y>k\),因此我们枚举的下界就是 \(k+1\),那么枚举的上界是什么呢?显然是在 \(x=y\) 的时候就不能够再去枚举了,因为如果 \(y\) 再向后枚举的话就不能够保证 \(x\geqslant y\)。而又由于在这个时候 \(\frac{1}{k}=\frac{1}{x}+\frac{1}{y}\),因此 \(y\) 此时就是 \(2k\)。因此我们枚举的范围就是 \([k+1,2k]\)。我们发现这么枚举是 \(\mathcal O(k)\) 的,再看数据范围,显然 \(10^4\) 的复杂度不会爆炸,因此就可以通过这么愉快的枚举通过此题了。

Code

int n;

ii gcd(int a, int b) {return !b ? a : gcd(b, a % b);}

int main() {
while(scanf("%d", &n) == 1) {
vector<pii> ans;
F(int, i, n + 1, n * 2) {
int fm = i * n, fz = n - i;
int gg = gcd(fm, fz);
fm /= gg, fz /= gg;
if(fz == 1) ans.push_back(make_pair(-fm, i)); //第一项一定要先去相反数再放入 pair!!!因为这是 pair 的特性
}
println((int)ans.size());
F(int, i, 0, (int)ans.size() - 1) printf("1/%d = 1/%d + 1/%d\n", n, ans[i].fi, ans[i].se);
}
}

UVA10976 分数拆分 Fractions Again?! 题解的更多相关文章

  1. 洛谷P1458 顺序的分数 Ordered Fractions

    P1458 顺序的分数 Ordered Fractions 151通过 203提交 题目提供者该用户不存在 标签USACO 难度普及- 提交  讨论  题解 最新讨论 暂时没有讨论 题目描述 输入一个 ...

  2. NYOJ 66 分数拆分

    分数拆分 时间限制:3000 ms  |  内存限制:65535 KB 难度:1   描述 现在输入一个正整数k,找到所有的正整数x>=y,使得1/k=1/x+1/y.   输入 第一行输入一个 ...

  3. 洛谷——P1458 顺序的分数 Ordered Fractions

    P1458 顺序的分数 Ordered Fractions 题目描述 输入一个自然数N,对于一个最简分数a/b(分子和分母互质的分数),满足1<=b<=N,0<=a/b<=1, ...

  4. nyoj_66_分数拆分_201312012122

    分数拆分 时间限制:3000 ms  |           内存限制:65535 KB 难度:1   描述 现在输入一个正整数k,找到所有的正整数x>=y,使得1/k=1/x+1/y.   输 ...

  5. 洛谷 P1458 顺序的分数 Ordered Fractions

    P1458 顺序的分数 Ordered Fractions 题目描述 输入一个自然数N,对于一个最简分数a/b(分子和分母互质的分数),满足1<=b<=N,0<=a/b<=1, ...

  6. 分数拆分(Fractions Again?!, UVa 10976)

    题目链接:https://vjudge.net/problem/UVA-10976 It is easy to see that for every fraction in the form 1k(k ...

  7. 7_3 分数拆分(UVa10976)<缩小枚举范围>

    每一个(k>0)这种形式的分数我们总是可以找到2个正整数x和y(x >= y),使得:现在我们的问题是:给你k,请你写一个程序找出所有的x和y.Input输入含有多组测试数据(不会超过10 ...

  8. 分数拆分( Fractions Again, UVA 10976)-ACM

    It is easy to see that for every fraction in the form  (k > 0), we can always find two positive i ...

  9. P1458 顺序的分数 Ordered Fractions(有技巧的枚举)+C++类封装=精简代码

    题目描述 输入一个自然数N,对于一个最简分数a/b(分子和分母互质的分数),满足1<=b<=N,0<=a/b<=1,请找出所有满足条件的分数. 这有一个例子,当N=5时,所有解 ...

随机推荐

  1. SpringMVC注解搭配环境

    1.准备文件 2.工程中的pom <?xml version="1.0" encoding="UTF-8"?> <project xmlns= ...

  2. 调试:'Object reference note set to an instance of an object.'

    今天调试代码遇到一个奇怪的问题,每次调试到 var files = new List<string>()这一行代码,总是报错:System.NullReferenceException: ...

  3. Python技法1:变长和定长序列拆分

    Python中的任何序列(可迭代的对象)都可以通过赋值操作进行拆分,包括但不限于元组.列表.字符串.文件.迭代器.生成器等. 元组拆分 元组拆分是最为常见的一种拆分,示例如下: p = (4, 5) ...

  4. Codeforces 1373F - Network Coverage(模拟网络流)

    Codeforces 题面传送门 & 洛谷题面传送门 提供一个模拟网络流的题解. 首先我们觉得这题一脸可以流的样子,稍微想想可以想到如下建图模型: 建立源点 \(S,T\) 和上下两排点,不妨 ...

  5. 【2020五校联考NOIP #4】今天的你依旧闪耀

    题面传送门 题意: 对于一个长度为 \(n\)(\(n\) 为偶数)的排列 \(p\),定义一次"变换"后得到的排列 \(p'\) 为: \(p'_i=\begin{cases}p ...

  6. 洛谷 P6914 - [ICPC2015 WF]Tours(割边+找性质)

    洛谷题面传送门 神仙题. 深夜写题解感受真好 我们考虑两个简单环 \(C_1,C_2\)​​​,我们假设颜色种类数为 \(k\)​​​,那么我们需要有 \(C_1,C_2\)​​​ 均符合条件,而由于 ...

  7. FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅲ

    第三波,走起~~ FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅰ FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ 单位根反演 今天打多校时 1002 被卡科技了 ...

  8. Codeforces 1500F - Cupboards Jumps(set)

    Codeforces 题面传送门 & 洛谷题面传送门 nb tea!!!111 首先很显然的一件事是对于三个数 \(a,b,c\),其最大值与最小值的差就是三个数之间两两绝对值的较大值,即 \ ...

  9. 洛谷 P6478 - [NOI Online #2 提高组] 游戏(二项式反演+树形 dp)

    题面传送门 没错这就是我 boom0 的那场 NOIOL 的 T3 一年前,我在 NOIOL #2 的赛场上折戟沉沙,一年后,我从倒下的地方爬起. 我成功了,我不再是从前那个我了 我们首先假设 A 拥 ...

  10. 毕业设计之zabbix=[web检测

    网站对一个公司来说非常重要,里边包含了公司的业务,介绍和订单等相关信息,网站的宕掉了对公司的影响非常重大,所以要很好的对网站的页面进行监控 创建web场景 各部分介绍: Name:唯一的scenari ...