洛谷题面传送门

好几天没写题解了,写篇题解意思一下(大雾

考虑反悔贪心,首先我们考虑取出 \(a,b\) 序列中最大的 \(k\) 个数,但这样并不一定满足交集 \(\ge L\) 的限制,因此我们需要调整,我们假设 \(L-\) \(a,b\) 序列中最大的 \(k\) 个数的交集为 \(L'\),如果 \(L'\le 0\) 那不用调整直接输出即可。否则我们考虑每次调整部分 \(a_i,b_i\) 的取值使得 \(a,b\) 的交集加 \(1\),不难发现每次调整可能有以下可能:

  1. 选择两个下标 \(x,y\),满足选择了 \(a_x\) 没选 \(b_x\),以及选择了 \(b_y\) 没选 \(a_y\),将 \(a_x\) 改为 \(a_y\),答案增加 \(a_y-a_x\)
  2. 选择两个下标 \(x,y\),满足选择了 \(b_x\) 没选 \(a_x\),以及选择了 \(a_y\) 没选 \(b_y\),将 \(b_x\) 改为 \(b_y\),答案增加 \(b_y-b_x\)
  3. 选择三个下标 \(x,y,z\),满足选择了 \(a_x\) 没选 \(b_x\),选择了 \(b_y\) 没选 \(a_y\),\(a_z,b_z\) 都没选,将 \(a_x\) 改为 \(a_z\),\(b_y\) 改为 \(a_z\),答案增加 \((a_z+b_z)-a_x-b_y\)
  4. 选择三个下标 \(x,y,z\),满足选择了 \(a_x\) 没选 \(b_x\),选择了 \(b_y\) 没选 \(a_y\),\(a_z,b_z\) 都被选择了,将 \(a_z\) 改为 \(a_y\),\(b_z\) 改为 \(b_x\),答案增加 \(a_y+b_x-(a_z+b_z)\)

思路理到这里,聪明的读者一定能够发现,接下来的步骤与此题第二个解法大同小异了,我们记 \(st_i\) 表示下标为 \(i\) 的位置被选择的情况,\(st_i=0\) 表示 \(a_i,b_i\) 都没选,\(st_i=1\) 表示 \(a_i\) 被选 \(b_i\) 没选,\(st_i=2\) 表示 \(b_i\) 被选 \(a_i\) 没选,\(st_i=3\) 表示 \(a_i,b_i\) 都被选。

那么考虑维护六个大根堆:

  • \(q_1=\{a_i|st_i=2\}\)
  • \(q_2=\{b_i|st_i=1\}\)
  • \(q_3=\{-a_i|st_i=1\}\)
  • \(q_4=\{-b_i|st_i=2\}\)
  • \(q_5=\{a_i+b_i|st_i=0\}\)
  • \(q_6=\{-a_i-b_i|st_i=3\}\)

对于情况 \(1\) 相当于是取出 \(q_1,q_3\) 的根节点,情况 \(2\) 相当于是取出 \(q_2,q_4\) 的根节点,情况 \(3\) 相当于是取出 \(q_3,q_4,q_5\) 的根节点,情况 \(4\) 相当于是取出 \(q_1,q_2,q_6\) 的根节点,然后 xjb 乱搞一下就行了(确信

时间复杂度线对。

感觉这个 D1T3 比 D1T2 简单,虽然我都不会做

const int MAXN=2e5;
int n,k,l,a[MAXN+5],b[MAXN+5],st[MAXN+5];
pii ap[MAXN+5],bp[MAXN+5];
priority_queue<pii> q1,q2,q3,q4,q5,q6;
/*
q1: maximum a[i] with st[i]=2
q2: maximum b[i] with st[i]=1
q3: maximum -a[i] with st[i]=1
q4: maximum -b[i] with st[i]=2
q5: maximum a[i]+b[i] with st[i]=0
q6: maximum -a[i]-b[i] with st[i]=3
*/
void solve(){
scanf("%d%d%d",&n,&k,&l);memset(st,0,sizeof(st));
for(int i=1;i<=n;i++) scanf("%d",&a[i]),ap[i]=mp(a[i],i);
for(int i=1;i<=n;i++) scanf("%d",&b[i]),bp[i]=mp(b[i],i);
sort(ap+1,ap+n+1);reverse(ap+1,ap+n+1);
sort(bp+1,bp+n+1);reverse(bp+1,bp+n+1);ll ans=0;
for(int i=1;i<=k;i++) st[ap[i].se]|=1,ans+=ap[i].fi;
for(int i=1;i<=k;i++) st[bp[i].se]|=2,ans+=bp[i].fi;
for(int i=1;i<=n;i++) l-=(st[i]==3);chkmax(l,0);
q1.push(mp(-2e9,0));q2.push(mp(-2e9,0));q3.push(mp(-2e9,0));
q4.push(mp(-2e9,0));q5.push(mp(-2e9,0));q6.push(mp(-2e9,0));
for(int i=1;i<=n;i++){
if(st[i]==2){
q1.push(mp(a[i],i));
q4.push(mp(-b[i],i));
} if(st[i]==1){
q2.push(mp(b[i],i));
q3.push(mp(-a[i],i));
} if(!st[i]){
q5.push(mp(a[i]+b[i],i));
} if(st[i]==3){
q6.push(mp(-a[i]-b[i],i));
}
}
while(l--){
#define qpop(a,b)\
while(!q##a.empty()){\
int x=q##a.top().se;\
if(!x||st[x]==b) break;\
q##a.pop();\
}
qpop(1,2);qpop(2,1);qpop(3,1);
qpop(4,2);qpop(5,0);qpop(6,3);
ll res1=0ll+q1.top().fi+q3.top().fi;
ll res2=0ll+q2.top().fi+q4.top().fi;
ll res3=0ll+q3.top().fi+q4.top().fi+q5.top().fi;
ll res4=0ll+q1.top().fi+q2.top().fi+q6.top().fi;
ll mx=max(max(res1,res2),max(res3,res4));ans+=mx;
if(res1==mx){
int x=q1.top().se,y=q3.top().se;
q1.pop();q3.pop();st[x]=3;st[y]=0;
q5.push(mp(a[y]+b[y],y));
q6.push(mp(-a[x]-b[x],x));
} else if(res2==mx){
int x=q2.top().se,y=q4.top().se;
q2.pop();q4.pop();st[x]=3;st[y]=0;
q5.push(mp(a[y]+b[y],y));
q6.push(mp(-a[x]-b[x],x));
} else if(res3==mx){
int x=q3.top().se,y=q4.top().se,z=q5.top().se;
q3.pop();q4.pop();q5.pop();st[x]=st[y]=0;st[z]=3;
q5.push(mp(a[x]+b[x],x));
q5.push(mp(a[y]+b[y],y));
q6.push(mp(-a[z]-b[z],z));
} else{
int x=q1.top().se,y=q2.top().se,z=q6.top().se;
q1.pop();q2.pop();q6.pop();st[x]=st[y]=3;st[z]=0;
q6.push(mp(-a[x]-b[x],x));
q6.push(mp(-a[y]-b[y],y));
q5.push(mp(a[z]+b[z],z));
}
} printf("%lld\n",ans);
#define clr(x) while(!q##x.empty()) q##x.pop();
clr(1);clr(2);clr(3);clr(4);clr(5);clr(6);
}
int main(){
freopen("sequence.in","r",stdin);
freopen("sequence.out","w",stdout);
int qu;scanf("%d",&qu);
while(qu--) solve();
return 0;
}

洛谷 P5470 - [NOI2019] 序列(反悔贪心)的更多相关文章

  1. luogu P5470 [NOI2019]序列 dp 贪心 费用流 模拟费用流

    LINK:序列 考虑前20分 容易想到爆搜. 考虑dp 容易设\(f_{i,j,k,l}\)表示前i个位置 选了j对 且此时A选择了k个 B选择了l个的最大值.期望得分28. code //#incl ...

  2. 洛谷 P1628 合并序列

    洛谷 P1628 合并序列 题目传送门 题目描述 有N个单词和字符串T,按字典序输出以字符串T为前缀的所有单词. 输入格式 输入文件第一行包含一个正整数N: 接下来N行,每行一个单词,长度不超过100 ...

  3. 【洛谷 P1667】 数列 (贪心)

    题目链接 对于一个区间\([x,y]\),设这个区间的总和为\(S\) 那么我们在前缀和(设为\(sum[i]\))的意义上考虑到原操作其实就是\(sum[x−1]+=S\) , \(sum[x]+S ...

  4. 洛谷1417 烹调方案 dp 贪心

    洛谷 1417 dp 传送门 挺有趣的一道dp题目,看上去接近于0/1背包,但是考虑到取每个点时间不同会对最后结果产生影响,因此需要进行预处理 对于物品x和物品y,当时间为p时,先加x后加y的收益为 ...

  5. BZOJ 1500 洛谷2042维护序列题解

    BZ链接 洛谷链接 这道题真是丧心病狂.... 应该很容易就可以看出做法,但是写代码写的....... 思路很简单,用一个平衡树维护一下所有的操作就好了,重点讲解一下代码的细节 首先如果按照常规写法的 ...

  6. 洛谷 P4272 - [CTSC2009]序列变换(堆)

    洛谷题面传送门 u1s1 在我完成这篇题解之前,全网总共两篇题解,一篇使用的平衡树,一篇使用的就是这篇题解讲解的这个做法,但特判掉了一个点,把特判去掉在 BZOJ 上会 WA 一个点. 两篇题解都异常 ...

  7. 洛谷 P5469 - [NOI2019] 机器人(区间 dp+拉格朗日插值)

    洛谷题面传送门 神仙题,放在 D1T2 可能略难了一点( 首先显然对于 P 型机器人而言,将它放在 \(i\) 之后它会走到左边第一个严格 \(>a_i\) 的位置,对于 Q 型机器人而言,将它 ...

  8. 洛谷P4437 排列 [HNOI/AHOI2018] 贪心

    正解:贪心 解题报告: 传送门! 发现做题龟速,,,所以懒得写题目大意辣自己get一下QAQ 首先看到ai<=n,又当ai=j时j在i的前面,所以就变成对于每个点i有一个约束,即要求第ai个节点 ...

  9. 【洛谷】【二分答案+贪心】P1316 丢瓶盖

    [题目描述:] 陶陶是个贪玩的孩子,他在地上丢了A个瓶盖,为了简化问题,我们可以当作这A个瓶盖丢在一条直线上,现在他想从这些瓶盖里找出B个,使得距离最近的2个距离最大,他想知道,最大可以到多少呢? [ ...

随机推荐

  1. 表单编辑时el-form的validate方法执行无效,阻塞代码运行 - Element UI踩坑记录

    今天在用element-ui写管理后台需求时,遇到一个奇怪的问题 一个正常带校验的表单,在新增列表数据时表单校验功能正常: 但是在新增之后再去编辑数据时,表单校验却失效了,甚至阻塞了后续的代码执行,控 ...

  2. 2021.9.25考试总结[NOIP模拟61]

    终于有点阳间题了然而挂了60pts 哈哈 T1 交通 类似简单题,限制看似很复杂,但不难发现当确定一条边是否被删后会产生裙带关系,很多边会跟着自动被确定是否被删. 仔细观察可以得出这种关系会构成偶环结 ...

  3. SpringBoot:Spring容器的启动过程

    一.简述 Spring的启动过程就是IoC容器的启动过程,本质上就是创建和初始化Bean的工厂(BeanFactory),BeanFactory是整个SpringIoC的核心,Spring使用Bean ...

  4. 到底能不能用 join

    互联网上一直流传着各大公司的 MySQL 军规,其中关于 join 的描述,有些公司不推荐使用 join,而有些公司则规定有条件的使用 join, 它们都是教条式的规定,也没有详细说其中的原因,这就很 ...

  5. 大型DELETE(删除大量数据)的一种解决方案

    通过执行单条DELETE语句来删除一个大型的数据集会有以下的缺点: 1.DELETE语句的操作要被完整地记录到日志中,这要求在事务日志中要有足够的空间以完成整个事务: 2.在删除操作期间(可能会花费很 ...

  6. Luogu P2467 [SDOI2010]地精部落 | 神奇的dp

    题目链接 DP 题目大意:给定一个数n,求1~n这n个整数的所有排列中有多少个波动数列,将这个数量%p后输出. 什么是波动数列呢?顾名思义,就是一个大.一个小.一个大.一个小--或者是一个小.一个大. ...

  7. ReplacingMergeTree:实现Clickhouse数据更新

    摘要:Clickhouse作为一个OLAP数据库,它对事务的支持非常有限.本文主要介绍通过ReplacingMergeTree来实现Clickhouse数据的更新.删除. 本文分享自华为云社区< ...

  8. 【Python+postman接口自动化测试】(7)Postman 的使用教程

    Postman v6的使用 Postman: 简单方便的接口调试工具,便于分享和协作.具有接口调试,接口集管理,环境配置,参数化,断言,批量执行,录制接口,Mock Server, 接口文档,接口监控 ...

  9. linux运维思想

    1.安装部署某个服务或者研究某个知识点时,宁可花大量时间,也需要尽量将该服务搞透,后续再遇到相关问题时你会发现这为你节省的时间将远远比你当时花的时间多. 2.安装部署时,做好记录,发本地记录并发表博文 ...

  10. LeetCode刷题 树专题

    树专题 关于树的几个基本概念 1 树的节点定义 2 关于二叉树的遍历方法 2.1 前序遍历 2.2 中序遍历 2.3 后序遍历 2.4 层序遍历 3 几种常见的树介绍 3.1 完全二叉树 3.2 二叉 ...