P6604 [HNOI2016]序列 加强版
*I. P6604 [HNOI2016]序列 加强版
摘自学习笔记 简单树论 笛卡尔树部分例题 I.
和 P6503 比较类似。我们设 \(f_i\) 表示全局以 \(i\) 结尾的子区间的最小值之和,令 \(p_i\) 为下标在 \(i\) 之前第一个比 \(a_i\) 小的位置,显然有 \(f_i=f_{p_i}+(i-p_i)a_i\):因为 \(a_i\) 对 \(p_i\) 以及 \(p_i\) 以前的最小值没有影响(即 \([1,p_i]\) 与 \([1,i]\),\([2,p_i]\) 与 \([2,i]\cdots\) \([p_i,p_i]\) 与 \([p_i,i]\) 的最小值相同),所以可以直接由 \(f_{p_i}\) 转移得来。而根据 \(p_i\) 的定义,后面 \(i-p_i\) 个子序列(即 \([p_i+1,i],[p_i+2,i]\cdots,[i,i]\))的最小值为 \(a_i\)。
注意到 \(p_i\) 实际相当于 \(i\) 在笛卡尔树上第一个向左走的父亲,求 \(p_i\) 的过程十分类似构建笛卡尔树:笛卡尔树上每个节点的祖先由左右两个单调栈构成。
考虑对一个区间求答案:求出区间最小值的位置 \(p\),那么左端在 \(p\) 左边,右端在 \(p\) 右边的子区间最小值为 \(a_p\),故答案加上 \(a_p\times (p-l+1)\times (r-p+1)\)。此外,我们还需求出 \([l,p)\) 与 \((p,r]\) 的答案:考虑 \((p,r]\) 每个位置对答案的贡献都是 \(f_r-f_p\),因为 \([i,p]\) 与 \([i,r]\ (1\leq i\leq p)\) 的最小值相同。前缀和优化可以做到 \(\mathcal{O}(1)\) 回答每个询问。对于 \([l,p)\) 同理,我们只需预处理出 \(g_i\) 表示全局以 \(i\) 开头的子区间的最小值之和并类似处理即可。
复杂度瓶颈在于区间 RMQ,时间复杂度 \(\mathcal{O}(n\log n+q)\)。
const int N = 1e5 + 5;
const int K = 17;
namespace gen {
ull s, a, b, c, las = 0;
ull rand() {return s ^= (a + b * las) % c;}
}
int n, q, type, stc[N], *top = stc, a[N], lg[N], pre[N], suf[N];
ll mi[K][N], fp[N], gp[N], fs[N], gs[N]; ull res;
int cmp(int x, int y) {return a[x] < a[y] ? x : y;}
int RMQ(int l, int r) {int d = lg[r - l + 1]; return cmp(mi[d][l], mi[d][r - (1 << d) + 1]);}
int main(){
cin >> n >> q >> type;
for(int i = 1; i <= n; i++) a[i] = read(), mi[0][i] = i;
for(int i = 2; i <= n; i++) lg[i] = lg[i >> 1] + 1;
for(int i = 1; i <= lg[n]; i++)
for(int j = 1; j + (1 << i) - 1 <= n; j++)
mi[i][j] = cmp(mi[i - 1][j], mi[i - 1][j + (1 << i - 1)]);
for(int i = 1; i <= n; i++) {
while(*top && a[*top] >= a[i]) suf[*top--] = i; // 可以类比求笛卡尔树的过程: ls[i] = *top, 因此 suf[*top] = i;
pre[i] = *top, *++top = i; // 同理, rs[*top] = i, 所以 pre[i] = *top: 笛卡尔树上每个节点的祖先是由两个单调栈构成的!
}
for(int i = 1; i <= n; i++)
fp[i] = fp[pre[i]] + 1ll * a[i] * (i - pre[i]), gp[i] = gp[i - 1] + fp[i];
for(int i = n; i; i--)
fs[i] = fs[suf[i]] + 1ll * a[i] * (suf[i] - i), gs[i] = gs[i + 1] + fs[i];
if(type) gen :: s = read(), gen :: a = read(), gen :: b = read(), gen :: c = read();
for(int i = 1, l, r; i <= q; i++) {
if(type == 0) l = read(), r = read();
else {
l = gen :: rand() % n + 1;
r = gen :: rand() % n + 1;
if(l > r) swap(l, r);
}
ll p = RMQ(l, r), ans;
ans = a[p] * (r - p + 1) * (p - l + 1);
ans += gp[r] - gp[p] - fp[p] * (r - p);
ans += gs[l] - gs[p] - fs[p] * (p - l);
res ^= gen :: las = ans;
}
cout << res << endl;
return flush(), 0;
}
P6604 [HNOI2016]序列 加强版的更多相关文章
- LOJ 6057 - [HNOI2016]序列 加强版再加强版
Description 给定一个长度为 \(n\le 3*10^6\) 的序列 \(q\le 10^7\) 次询问每次求区间 \([l,r]\) 的所有子区间的最小值的和 询问随机 Solution ...
- BZOj 4540: [Hnoi2016]序列 [莫队 st表 预处理]
4540: [Hnoi2016]序列 题意:询问区间所有子串的最小值的和 不强制在线当然上莫队啦 但是没想出来,因为不知道该维护当前区间的什么信息,维护前后缀最小值的话不好做 想到单调栈求一下,但是对 ...
- 【LG3246】[HNOI2016]序列
[LG3246][HNOI2016]序列 题面 洛谷 题解 60pts 对于每个位置\(i\),单调栈维护它往左第一个小于等于它的位置\(lp_i\)以及往右第一个小于它的位置\(rp_i\). 那么 ...
- 4540: [Hnoi2016]序列
4540: [Hnoi2016]序列 https://www.lydsy.com/JudgeOnline/problem.php?id=4540 分析: 莫队+RMQ+单调栈. 考虑加入一个点后,区间 ...
- [BZOJ4540][HNOI2016]序列 莫队
4540: [Hnoi2016]序列 Time Limit: 20 Sec Memory Limit: 512 MB Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n ...
- BZOJ4540 Hnoi2016 序列 【莫队+RMQ+单调栈预处理】*
BZOJ4540 Hnoi2016 序列 Description 给定长度为n的序列:a1,a2,-,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,-,ar- ...
- 【BZOJ4540】[Hnoi2016]序列 莫队算法+单调栈
[BZOJ4540][Hnoi2016]序列 Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,…,a ...
- [Bzoj4540][Hnoi2016] 序列(莫队 + ST表 + 单调队列)
4540: [Hnoi2016]序列 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1567 Solved: 718[Submit][Status] ...
- [HNOI2016]序列 CDQ+DP
[HNOI2016]序列 CDQ 链接 loj 思路 一个点最小变为l,最大变为r,不变的时候为v 那么j能在i前面就要满足. \(j<i\) \(r[j]<=v[i]\) \(v[j]& ...
随机推荐
- 【UE4 设计模式】适配器模式 Adapter Pattern
概述 描述 将一个接口转换成客户希望的另一个接口,适配器模式使接口不兼容的那些类可以一起工作,其别名为包装器(Wrapper). 套路 Target(目标抽象类) 目标抽象类定义了客户所需要的接口,可 ...
- 974.和可被K整除的子数组
题目 给定一个整数数组 A,返回其中元素之和可被 K 整除的(连续.非空)子数组的数目. 示例: 输入:A = [4,5,0,-2,-3,1], K = 5 输出:7 解释: 有 7 个子数组满足其元 ...
- Mybatis 动态Sql练习
建表 CREATE TABLE `student` ( `s_id` varchar(20) CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_ai_ci NOT ...
- SpringCloud 2020.0.4 系列之 Feign
1. 概述 老话说的好:任何问题都有不止一种的解决方法,当前的问题没有解决,只是还没有发现解决方法,而并不是无解. 言归正传,之前我们聊了 SpringCloud 的服务治理组件 Eureka,今天我 ...
- 普通用户在命令终端使用Python脚本连入校园网
普通用户在命令终端使用Python脚本连入校园网 想要连入校园网的步骤: 浏览器输入对应的IP地址,输入账号密码连网: 下载对应软件,输入账号密码连网: 而面对没有界面的服务器,而你又没有root权限 ...
- [Beta]the Agiles Scrum Meeting 11
会议时间:2020.5.26 21:00 1.每个人的工作 今天已完成的工作 成员 已完成的工作 issue yjy 帮助解决技术问题 tq 完成评测机新增评测指标 评测部分增加更多评测指标 wjx ...
- 2020BUAA软工热身作业
2020BUAA软工热身作业 17373010 杜博玮 项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 热身作业 我在这个课程的目标是 学习软件工 ...
- 源码解析-Abp vNext丨分布式事件总线DistributedEventBus
前言 上一节咱们讲了LocalEventBus,本节来讲本地事件总线(DistributedEventBus),采用的RabbitMQ进行实现. Volo.Abp.EventBus.RabbitMQ模 ...
- 彻底搞通TCP滑动窗口
在我们当初学习网络编程的时候,都接触过TCP,在TCP中,对于数据传输有各种策略,比如滑动窗口.拥塞窗口机制,又比如慢启动.快速恢复.拥塞避免等.通过本文,我们将了解滑动窗口在TCP中是如何使用的. ...
- Des加密解密(公共方法)
1 public class Des 2 { 3 public static string Encrypt(string message, string key) 4 { 5 DES des = ne ...