已知三角形ABC为锐角三角形,求 sinA + sinBsin(C/2) 的最大值。

:Δ := sinA + sinB·sin(C/2)

= sin(B+C) + sinB·sin(C/2)

= sinB·cosC + cosB·sinC + sinB·sin(C/2)

= sinB·[cosC + sin(C/2)] + cosB·sinC

令 m := cosC + sin(C/2),n := sinC,g := (m2 + n2)1/2,由题设知 0 ∠C < Π/2

易知 0 < m,n < g,且有 (m/g)2 +(n/g)2 = 1,可令 cosθ := m/g,sinθ := n/g,0 < ∠θ < Π/2,于是

Δ =  sinB·m + cosB·n = g(sinB·m/g + cosB·n/g) = g·(sinB·cosθ + cosB·sinθ) = g·sin(B+θ) ≤ g

m2 + n2 =  cos2C + 2·cosC·sin(C/2) + sin2(C/2)  + sin2C = 1 + 2·cosC·sin(C/2) + sin2(C/2)

令 x := sin(C/2),则 cosC = cos2(C/2) - sin2(C/2) = 1 - 2x2,于是

f(x) := m2 + n2 =  1 + 2(1 - 2x2)x + x2 = -4x3 + x2 + 2x + 1

f'(x) = -12x2 + 2x + 2 = 2(-6x2 + x + 1) = 2(3x + 1)(-2x + 1)

由 x 的定义可知,0 < x < sin(Π/4) = (21/2)/2,易知

满足 f'(x) = 0 的解只有 x = 1/2,且 f(x) 在 x = 1/2 时取得最大值,即 f(1/2) = -4·1/8 + 1/4 + 1 + 1 = 7/4

由1/2 = sin(C/2),知 ∠C = Π/3

所以当∠C = Π/3 时,g 取得最大值 (7/4)1/2 =   (71/2)/2

此时 sinθ = n/g = (sinC)/g = [(31/2)/2] / [(71/2)/2] = (3/7)1/2

可知 Π/6 < ∠θ < Π/4

令 ∠B + ∠θ = Π/2,可知 Π/4 < ∠B < Π/3

于是再由 ∠A + ∠B = Π - Π/3 = 2Π/3,可知

Π/3 < ∠A < 5Π/12 < Π/2

综上,当∠C = Π/3 时,存在锐角 ∠A 和 ∠B 满足 ∠A + ∠B + ∠C = Π,并使得 sinA + sinBsin(C/2) 取得最大值 (71/2)/2。

已知三角形ABC为锐角三角形,求 sinA + sinB·sin(C/2) 的最大值。的更多相关文章

  1. 【C语言】已知三角形三边长,求三角形面积

    一. 数学基础: 已知三角形的三边,计算三角形面积,需要用到海伦公式: 即p=(a+b+c)/2 二. 算法: 输入三个边长,套用海伦公式计算面积,并输出. 可以先判断是否可以构成三角形,即任意两边之 ...

  2. python应用-已知三角形的边长求他的面积和周长

    """ 已知三角形的边长求他的面积和周长 Author:罗万财 Date:2017-3-3 """ import math a=float( ...

  3. C语言:已知三角形三边长求面积

    //已知三角形三边长求面积 #include <stdio.h> #include <math.h> int main() { float a,b,c,p,s; int x=0 ...

  4. 转 已知两点坐标和半径求圆心坐标程序C++

      数学思想:利用圆方程和直线方程 已知两点坐标和半径求圆心坐标程序 #include <iostream> #include <fstream> #include <c ...

  5. NX二次开发-UFUN已知两个向量方向求夹角角度UF_VEC3_angle_between

    NX9+VS2012 #include <uf.h> #include <uf_ui.h> #include <uf_vec.h> #include <uf_ ...

  6. golang实现已知三角形三点坐标,求三角形面积

    代码如下: func GetTriangleAreaByVector(x vector.Vector3,y vector.Vector3,z vector.Vector3) float64 { //根 ...

  7. ACM题目————已知前序和中序求后序

    #include <iostream> #include <cstring> #include <cstdio> using namespace std; ], z ...

  8. HDU 1710Binary Tree Traversals(已知前序中序,求后序的二叉树遍历)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1710 解题思路:可以由先序和中序的性质得到 : 先序的第一个借点肯定是当前子树的根结点, 那么在 中序 ...

  9. 已知一棵完全二叉树,求其节点的个数 要求:时间复杂度低于O(N),N为这棵树的节点个数

    package my_basic.class_4; public class Code_08_CBTNode { // 完全二叉树的节点个数 复杂度低于O(N) public static class ...

随机推荐

  1. 【游记】OI 2020-2021(在更)

    [CSP-S2020初赛] [CSP-S2020] [NOIp 2020] [NOI冬令营 2021] [省选 2021] [NOI 2021]

  2. XIN队算法

    XIN队算法 注:名称由莫队算法改编而来 从luogu搬过来了... \(newly\;upd:2021.7.8\) \(newly\;upd:2021.6.6\) OI至高算法,只要XIN队算法打满 ...

  3. python中进程详解

    1:pdb调试:基于命令行的调试工具,非常类似gnu和gdb调试,以下是常用的调试命令: 可以python -m pdb xxx.py(你的py文件名)进入命令行调试模式 命令 简写命令 作用 bea ...

  4. centos 服务

    1,开机开启服务 #  chkconfig vsftpd on

  5. Linux[Manjaro] 小新15笔记本AMD ryzen锐龙4800U,在安装系统后出现的随即死机冻屏问题

    Linux[Manjaro] 小新15AMD ryzen锐龙4800U,在安装系统后出现的随即死机冻屏问题解决办法 年初尝试将manjaro安装在我的笔记本上就存在这个问题,也一度将我劝退.系统安装在 ...

  6. 2019-07-06 sql 连续出现次数

    由手机通讯记录界面想到的问题 SELECT CASE WHEN AA.num=1 THEN AA.Tel ELSE AA.Tel+'('+CASt(AA.num AS VARCHAR(4))+')' ...

  7. 获取异常信息里再出异常就找不到日志了,我TM人傻了

    本系列是 我TM人傻了 系列第三期[捂脸],往期精彩回顾: 升级到Spring 5.3.x之后,GC次数急剧增加,我TM人傻了 这个大表走索引字段查询的 SQL 怎么就成全扫描了,我TM人傻了 最近组 ...

  8. 寄生线虫免疫学研究新路径!华中农业大学胡敏团队报道寄生线虫N-糖基化修饰图谱

    N-糖基化修饰是真核生物中一种重要的蛋白质翻译后修饰,在许多生物学过程中起着关键作用,包括蛋白质折叠.受体-配体相互作用.免疫应答和疾病发病机制等.近年来,高精度质谱技术的出现促进了糖组和糖蛋白质组的 ...

  9. 第一个Java文件

    HelloWorld 1.新建一个文件夹,用来存放java文件的 2.用subline来编辑第一个Java文件 要注意的是java的文件名为.java 我们自定义的文件名是Hello 3.编写第一个j ...

  10. SpringBoot报错:Error starting ApplicationContext. To display the conditions report re-run your application with 'debug' enabled.

    Spring Boot报错:Error starting ApplicationContext. To display the conditions report re-run your applic ...