NOIP 模拟 $38\; \rm c$
题解 \(by\;zj\varphi\)
发现就是一棵树,但每条边都有多种不同的颜色,其实只需要保留随便三种颜色即可。
直接点分治,将询问离线,分成一端为重心,和两端都不为重心的情况。
每次只关心经过重心的询问,其他询问不管,具体实现就是点分治的套路,每次搜一棵子树,更新标记。
动归有些小细节,尽量边权化点权,不容易出错,式子直接看官方题解。
复杂度 \(\mathcal O\rm(3^3nlogn+3^4q)\)
Code
#include<bits/stdc++.h>
#define Re register
#define ri Re signed
#define p(i) ++i
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?(-1):*p1++
struct nanfeng_stream{
template<typename T>inline nanfeng_stream &operator>>(T &x) {
Re bool f=0;x=0;Re char ch=gc();
while(!isdigit(ch)) f|=ch=='-',ch=gc();
while(isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48),ch=gc();
return x=f?-x:x,*this;
}
}cin;
}
using IO::cin;
namespace nanfeng{
#define node(x,y) (node){x,y}
#define pb emplace_back
#define fi first
#define se second
#define mk std::make_pair
#define FI FILE *IN
#define FO FILE *OUT
template<typename T>inline T cmax(T x, T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x, T y) {return x>y?y:x;}
static const int N=1e5+7;
int first[N],dp[N][4][4],W[N][4],nm[N],tmp[4],G[N],siz[N],ans[N<<2],vis[N],dep,rt,pos,q,cnt,t=1,n,m;
struct node{int v,i;}ask;
std::vector<node> vc[N];
struct edge{int v,nxt,w[4],nm;}e[N<<1];
std::map<std::pair<int,int>,std::set<int> > mp;
inline void add(int u,int v,int *w,int nm) {
e[t].v=v,e[t].nm=nm;
for (ri i(1);i<=nm;p(i)) e[t].w[i]=w[i];
e[t].nxt=first[u],first[u]=t++;
e[t].v=u,e[t].nm=nm;
for (ri i(1);i<=nm;p(i)) e[t].w[i]=w[i];
e[t].nxt=first[v],first[v]=t++;
}
void dfs_find(int S,int x,int fa) {
siz[x]=1;
int GS=0;
for (ri i(first[x]),v;i;i=e[i].nxt) {
if ((v=e[i].v)==fa||G[v]) continue;
dfs_find(S,v,x);
siz[x]+=siz[v];
GS=cmax(GS,siz[v]);
}
GS=cmax(GS,S-siz[x]);
if (GS<cnt) cnt=GS,pos=x;
}
void dfs_solve(int x,int fa) {
siz[x]=1;
for (ri i(first[x]),v;i;i=e[i].nxt) {
if ((v=e[i].v)==fa||G[v]) continue;
for (ri j(1);j<=e[i].nm;p(j)) W[v][j]=e[i].w[j];
nm[v]=e[i].nm;
for (ri l(1);l<=nm[rt];p(l))
for (ri j(1);j<=nm[v];p(j))
for (ri k(1);k<=nm[x];p(k))
if (W[x][k]==W[v][j]) dp[v][l][j]=cmax(dp[v][l][j],dp[x][l][k]);
else dp[v][l][j]=cmax(dp[v][l][j],dp[x][l][k]+1);
dfs_solve(v,x);
siz[x]+=siz[v];
}
}
void dfs_query(int x,int fa) {
for (auto nx:vc[x]) {
if (!vis[nx.v]&&nx.v!=pos) continue;
if (nx.v==pos) {
for (ri i(1);i<=nm[rt];p(i))
for (ri j(1);j<=nm[x];p(j))
ans[nx.i]=cmax(ans[nx.i],dp[x][i][j]);
} else {
for (ri i(1);i<=nm[rt];p(i))
for (ri j(1);j<=nm[vis[nx.v]];p(j))
for (ri k(1);k<=nm[x];p(k))
for (ri l(1);l<=nm[nx.v];p(l)) {
if (W[vis[nx.v]][j]==W[rt][i]) ans[nx.i]=cmax(ans[nx.i],dp[x][i][k]+dp[nx.v][j][l]-1);
else ans[nx.i]=cmax(ans[nx.i],dp[x][i][k]+dp[nx.v][j][l]);
}
}
}
for (ri i(first[x]),v;i;i=e[i].nxt) {
if ((v=e[i].v)==fa||G[v]) continue;
dfs_query(v,x);
}
}
void dfs_mark(int x,int fa) {
vis[x]=rt;
for (ri i(first[x]),v;i;i=e[i].nxt) {
if ((v=e[i].v)==fa||G[v]) continue;
dfs_mark(v,x);
}
}
void dfs_init(int x,int fa) {
vis[x]=0;
memset(dp[x],0,sizeof(dp[x]));
for (ri i(first[x]),v;i;i=e[i].nxt) {
if (G[v=e[i].v]||v==fa) continue;
dfs_init(v,x);
}
}
void solve(int S,int x) {
dfs_find(cnt=S,x,0);
dfs_init(pos,0);
int np;
G[np=pos]=1;
for (ri i(first[np]),v;i;i=e[i].nxt) {
if (G[v=e[i].v]) continue;
for (ri j(1);j<=e[i].nm;p(j)) dp[v][j][j]=1,W[v][j]=e[i].w[j];
nm[v]=e[i].nm;
dfs_solve(rt=v,np);
dfs_query(v,np);
dfs_mark(v,np);
}
dfs_init(pos,0);
for (ri i(first[np]),v;i;i=e[i].nxt) {
if (G[v=e[i].v]) continue;
solve(siz[v],v);
}
}
inline int main() {
//FI=freopen("nanfeng.in","r",stdin);
//FO=freopen("nanfeng.out","w",stdout);
cin >> n >> m;
for (ri i(1),u,v,w;i<=m;p(i)) {
cin >> u >> v >> w;
if (u>v) std::swap(u,v);
mp[mk(u,v)].insert(w);
}
for (auto x:mp) {
ri ct=0;
Re std::pair<int,int> tp=x.fi;
Re std::set<int> tps=x.se;
if (tps.size()>3) for (auto w:tps) {tmp[++ct]=w;if (ct==3) break;}
else for (auto w:tps) tmp[++ct]=w;
add(tp.fi,tp.se,tmp,ct);
}
cin >> q;
for (ri i(1),u,v;i<=q;p(i)) cin >> u >> v,vc[u].pb(node(v,i)),vc[v].pb(node(u,i));
solve(n,1);
for (ri i(1);i<=q;p(i)) printf("%d\n",ans[i]);
return 0;
}
}
int main() {return nanfeng::main();}
NOIP 模拟 $38\; \rm c$的更多相关文章
- NOIP 模拟 $38\; \rm b$
题解 \(by\;zj\varphi\) 考虑转化问题,将计算最大公约数换为枚举最大公约数. 设 \(sum_i\) 为最大公约数为 \(i\) 的方案数,可以容斥求解,\(sum_i=f_i-\su ...
- NOIP 模拟 $38\; \rm a$
题解 \(by\;zj\varphi\) 压行. 枚举两行,将中间的行压成一行,然后直接前缀和加二分. 注意边界细节问题. Code #include<bits/stdc++.h> #de ...
- 2021.5.22 noip模拟1
这场考试考得很烂 连暴力都没打好 只拿了25分,,,,,,,,好好总结 T1序列 A. 序列 题目描述 HZ每周一都要举行升旗仪式,国旗班会站成一整列整齐的向前行进. 郭神作为摄像师想要选取其中一段照 ...
- NOIP模拟3
期望得分:30+90+100=220 实际得分:30+0+10=40 T1智障错误:n*m是n行m列,硬是做成了m行n列 T2智障错误:读入三个数写了两个%d T3智障错误:数值相同不代表是同一个数 ...
- 7.22 NOIP模拟7
又是炸掉的一次考试 T1.方程的解 本次考试最容易骗分的一道题,但是由于T2花的时间太多,我竟然连a+b=c都没判..暴力掉了40分. 首先a+b=c,只有一组解. 然后是a=1,b=1,答案是c-1 ...
- NOIP模拟 1
NOIP模拟1,到现在时间已经比较长了.. 那天是6.14,今天7.18了 //然鹅我看着最前边缺失的模拟1,还是终于忍不住把它补上,为了保持顺序2345重新发布了一遍.. # 用 户 名 ...
- 20190725 NOIP模拟8
今天起来就是虚的一批,然后7.15开始考试,整个前半个小时异常的困,然后一看题,T1一眼就看出了是KMP,但是完了,自己KMP的打法忘的一干二净,然后开始打T2,T2肝了一个tarjan点双就扔上去了 ...
- 20190902+0903合集-NOIP模拟
一直没时间写QwQ 于是补一下. Day 1 晚饭吃的有点恶心…… $1s\,2s\,5s$ 还开 -O2 ?? 有点恐怖. T1 猛的一想: 把外面设成一个点, 向入口连一条权为排队时间的边 从出口 ...
- 5.23考试总结(NOIP模拟2)
5.23考试总结(NOIP模拟2) 洛谷题单 看第一题第一眼,不好打呀;看第一题样例又一眼,诶,我直接一手小阶乘走人 然后就急忙去干T2T3了 后来考完一看,只有\(T1\)骗到了\(15pts\)[ ...
随机推荐
- yoyogo v1.7.5 发布, 独立依赖注入DI
YoyoGo v1.7.5 YoyoGo (Go语言框架) 一个简单.轻量.快速.基于依赖注入的微服务框架( web .grpc ),支持Nacos/Consoul/Etcd/Eureka/k8s / ...
- Java | 一个".java"源文件中是否可以包括多个类(不包括内部类)
第一种情况:(有public) 定义一个java源文件(Hello.java),里面只有一个类: public class Hello { public static void main(string ...
- 「BZOJ2839」集合计数
「BZOJ2839」集合计数 题目大意: 一个包含 \(n\) 个数的集合有 \(2^n\) 个子集,从这些子集中取出若干个集合(至少一个),使他们的交集的元素个数恰好为 \(k\),求方案数,答案对 ...
- 利用扫描仪形成PDF
1.打开WPS,新建PDF,从扫描仪新建 2.合并PDF:按照顺序添加指定PDF,合并即可完成
- EXCEL:宏 考场考号打印
Sub addwork() Rem 当前宏是根据学生数量 .每考场人数计算工作表数Dim i As IntegerRem xx为每个考场的人数Rem yy为当前专业标记Rem mm为当前专业考生人数R ...
- 团队开发day08
web端数据处理出现问题,不能通过servlet中的request获取属性值, 查找一番,前端的form设置上传数据格式为二进制类型,需要先转化,接收为 fileitem,在进行处理
- 【原创】如何通过-y和-v使用库文件
在进行仿真时,经常遇到设计代码中需要调用一些标准的库文件,但是在设计的编译列表filelist中却没有相应的库文件,这时为了完成仿真,需要设计人员提供对应的库文件或者库文件所在的路径,然后仿真时将这些 ...
- 使用mvn命令将pom和jar上传至nexus私服
要将自定义的jar或者pom上传至nexus私服,需要配置maven的settings文件! 上传至nexus私服配置 1. settings配置 <!-- maven设置私服对应的信息:id. ...
- 使用bind部署DNS主从服务器
说明:这里是Linux服务综合搭建文章的一部分,本文可以作为单独搭建主从DNS服务器的参考. 注意:这里所有的标题都是根据主要的文章(Linux基础服务搭建综合)的顺序来做的. 如果需要查看相关软件版 ...
- python里面的MD5加密 ---# hashlib包的使用
在应用程序的接口里,常用到签名:其中签名里用到MD5加密,这里用hashlib实现 hashlib 概念:Hash,译做"散列",也有直接音译为"哈希"的.把任 ...