One Person Game(扩展欧几里德求最小步数)
One Person Game
Time Limit: 2 Seconds Memory Limit: 65536 KB
There is an interesting and simple one person game. Suppose there is a number axis under your feet. You are at point A at first and your aim is point B. There are 6 kinds of operations you can perform in one step. That is to go left or right by a,b and c, here c always equals to a+b.
You must arrive B as soon as possible. Please calculate the minimum number of steps.
Input
There are multiple test cases. The first line of input is an integer T(0 < T ≤ 1000) indicates the number of test cases. Then T test cases follow. Each test case is represented by a line containing four integers 4 integers A, B, a and b, separated by spaces. (-231 ≤ A, B < 231, 0 < a, b < 231)
Output
For each test case, output the minimum number of steps. If it's impossible to reach point B, output "-1" instead.
Sample Input
2
0 1 1 2
0 1 2 4
Sample Output
1
-1
题解:不难列出线性方程a(x+z)+b(y+z)=B-A;即ax+by=C;
主要是中间找最小步数;//由于a+b可以用c来代替;所以,当x和y同号时, 34 //就可以用z=min(x,y)+max(x,y)-min(x,y)=max(x,y)来走,也就是一部分步数可以等于a+b 35 //所以还要找这种情况的步数。。。 36 //因为x和y越接近,(a+b)*step的越多,越优化, 37 //所以要在通解相交的点周围找;由于交点可能为小数,所以才在周围找的;
代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<vector>
#define mem(x,y) memset(x,y,sizeof(x))
using namespace std;
typedef long long LL;
const int INF=0x3fffffff;
void e_gcd(LL a,LL b,LL &d,LL &x,LL &y){
if(!b){
d=a;
x=;
y=;
}
else{
e_gcd(b,a%b,d,x,y);
LL temp=x;
x=y;
y=temp-a/b*y;
}
}
LL cal(LL a,LL b,LL c){
LL x,y,d;
e_gcd(a,b,d,x,y);
//printf("%lld %lld %lld\n",d,x,y);
if(c%d!=)return -;
x*=c/d;
y*=c/d;
//x=x0+b/d*t;y=y0-a/d*t;
b/=d;a/=d;
//由于a+b可以用c来代替;所以,当x和y同号时,
//就可以用z=min(x,y)+max(x,y)-min(x,y)=max(x,y)来走,也就是一部分步数可以等于a+b
//所以还要找这种情况的步数。。。
//因为x和y越接近,(a+b)*step的越多,越优化,
//所以要在通解相交的点周围找;由于交点可能为小数,所以才在周围找的;
LL mid=(y-x)/(a+b); // x0+bt=y0-at;
LL ans=(LL)INF*(LL)INF;
LL temp;
// printf("%lld\n",ans);
for(LL t=mid-;t<=mid+;t++){
if(abs(x+b*t)+abs(y-a*t)==abs(x+b*t+y-a*t))
temp=max(abs(x+b*t),abs(y-a*t));
else temp=abs(x+b*t)+abs(y-a*t);
ans=min(ans,temp);
// printf("%lld\n",temp);
}
return ans;
}
int main(){
LL T,A,B,a,b;
scanf("%lld",&T);
while(T--){
scanf("%lld%lld%lld%lld",&A,&B,&a,&b);
LL ans=cal(a,b,B-A);
printf("%lld\n",ans);
}
return ;
}
One Person Game(扩展欧几里德求最小步数)的更多相关文章
- POJ-1061青蛙的约会,扩展欧几里德求逆元!
青蛙的约会 以前不止一次看过这个题,但都没有去补..好吧,现在慢慢来做. 友情提示 ...
- ZOJ 3593 One Person Game(拓展欧几里得求最小步数)
One Person Game Time Limit: 2 Seconds Memory Limit: 65536 KB There is an interesting and simple ...
- POJ 1753 Flip Game (高斯消元 枚举自由变元求最小步数)
题目链接 题意:4*4的黑白棋,求把棋全变白或者全变黑的最小步数. 分析:以前用状态压缩做过. 和上题差不多,唯一的不同是这个终态是黑棋或者白棋, 但是只需要把给的初态做不同的两次处理就行了. 感觉现 ...
- CodeForces 146E - Lucky Subsequence DP+扩展欧几里德求逆元
题意: 一个数只含有4,7就是lucky数...现在有一串长度为n的数...问这列数有多少个长度为k子串..这些子串不含两个相同的lucky数... 子串的定义..是从这列数中选出的数..只要序号不同 ...
- 公钥密码之RSA密码算法扩展欧几里德求逆元!!
扩展欧几里得求逆元 实话说这个算法如果手推的话问题不大,无非就是辗转相除法的逆过程,还有一种就是利用扩展欧几里德算法,学信安数学基础的时候问题不大,但现在几乎都忘了,刷题的时候也是用kuangbin博 ...
- HDU 5768Lucky7(多校第四场)容斥+中国剩余定理(扩展欧几里德求逆元的)+快速乘法
地址:http://acm.hdu.edu.cn/showproblem.php?pid=5768 Lucky7 Time Limit: 2000/1000 MS (Java/Others) M ...
- POJ 3185 The Water Bowls (高斯消元 求最小步数)
题目链接 题意:有20个数字,0或1.如果改变一个数的状态,它左右两边的两个数的状态也会变反.问从目标状态到全0,至少需要多少次操作. 分析: 和上一题差不多,但是比上一题还简单,不多说了,但是在做题 ...
- poj 3009 冰球 【DFS】求最小步数
题目链接:https://vjudge.net/problem/POJ-3009 转载于:https://www.cnblogs.com/Ash-ly/p/5728439.html 题目大意: 要求把 ...
- 51Nod 3的幂的和(扩展欧几里德求逆元)
求:3^0 + 3^1 +...+ 3^(N) mod 1000000007 Input 输入一个数N(0 <= N <= 10^9) Output 输出:计算结果 Input示例 3 O ...
随机推荐
- mysql 存储过程 游标的使用 与定义
1.游标的作用及属性 游标的作用就是用于对查询数据库所返回的记录进行遍历,以便进行相应的操作:游标有下面这些属性: a.游标是只读的,也就是不能更新它: b.游标是不能滚动的,也就是只能在一个方向上进 ...
- BZOJ 4311: 向量( 按时间分治 + 线段树 )
离线, 然后按时间分治, 每个向量都有出现时间[l, r], 直接插入时间线段树(一个向量只会影响O(logN)数量级的线段树节点). 在线段树每个节点弄出凸壳然后二分. 时间复杂度O(Nlog^2N ...
- C++中的unordered_map
1.简介 随着C++0x标准的确立,C++的标准库中也终于有了hash table这个东西.很久以来,STL中都只提供<map>作为存放对应关系的容器,内部通常用红黑树实现,据说原因是二叉 ...
- WPF:向客户端发出某一属性值已更改的通知INotifyPropertyChanged接口
Person.cs using System.ComponentModel; namespace _01_INotifyPropertyChanged { class Person:INotifyPr ...
- 在CentOS 7 / Gnome 3 双屏时设置主屏
在Windows中设置扩展显示器为主屏的方式非常清楚,但在Linux中就不是那么明显了,下面介绍如何完成这个设置 ------------------------------------------- ...
- SVN权限配置
初始化SVN仓库后,里面有以下文件. 其中conf是对授权.认证进行管理的,conf目录里的内容有: passwd设立账户密码: authz权限管理: 假设pwd里有user1,user2两个账户 @ ...
- oracle查询字符集语句
(1)查看字符集(三条都是等价的) 复制代码 代码如下: select * from v$nls_parameters where parameter='NLS_CHARACTERSET'sel ...
- android HTTP发送及MD5加密收集
发送部分: public void MyFunction{ HttpClient httpclient = new DefaultHttpClient(); //你的URL HttpPost http ...
- 《Java4Android视频教程》学习笔记(二)
一:面向对象 1.对象 ①对象的使用方法 对象.变量 对象.方法 ②匿名对象 new A().方法 new A().变量 匿名对象会被分配到对内存中 java内存处理机制会对一定时间内无指针指向的对象 ...
- ubuntu openstack
https://wiki.ubuntu.com/ServerTeam/CloudArchive/ sudo add-apt-repository cloud-archive:junoLong Term ...