枚举Fl, 就变成一个整数划分的问题了...f(i,j) = f(i-j,j-1)+f(i-j,j)-f(i-N-1,j-1)递推。f(i,j)表示数i由j个不同的数组成,且最大不超过N的方案数

--------------------------------------------------------------------------

#include<cstdio>
#include<cstring>
#include<algorithm>
 
using namespace std;
 
const int maxn = 10009;
const int maxk = 19;
 
int MOD, N, K;
int f[maxn * maxk][maxk];
 
void upd(int &t, int d) {
if((t += d) >= MOD)
t -= MOD;
}
 
int main() {
int T;
scanf("%d", &T);
while(T--) {
scanf("%d%d%d", &N, &K, &MOD);
memset(f, 0, sizeof f);
f[0][0] = 1;
for(int i = 1, lim = N * K; i < lim; i++)
for(int j = 1; j <= min(i, K); j++) {
f[i][j] = f[i - j][j - 1] + f[i - j][j];
if(i > N)
f[i][j] -= f[i - N - 1][j - 1];
f[i][j] += MOD;
while(f[i][j] >= MOD)
f[i][j] -= MOD;
}
int ans = 0;
for(int i = 1, lim = N * K; i < lim; i++)
for(int j = 1; j < K; j++) {
upd(ans, f[i][j] * f[i][K - j] % MOD);
if(j > 1)
upd(ans, f[i][j - 1] * f[i][K - j] % MOD);
}
if(K == 1)
ans = 1;
printf("%d\n", ans);
}
return 0;
}

--------------------------------------------------------------------------

3612: [Heoi2014]平衡

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 173  Solved: 126
[Submit][Status][Discuss]

Description

下课了,露露、花花和萱萱在课桌上用正三棱柱教具和尺子摆起了一个“跷跷板”。
     这个“跷跷板”的结构是这样的:底部是一个侧面平行于地平面的正三棱柱教具,
上面 摆着一个尺子,尺子上摆着若干个相同的橡皮。尺子有 2n + 1 条等距的刻度线,
第 n + 1 条 刻度线恰好在尺子的中心,且与正三棱柱的不在课桌上的棱完全重合。
     露露发现这个“跷跷板”是不平衡的(尺子不平行于地平面)。于是,她又在尺
子上放 了几个橡皮,并移动了一些橡皮的位置,使得尺子的 2n + 1 条刻度线上都恰
有一块相同质 量的橡皮。“跷跷板”平衡了,露露感到很高兴。
     花花觉得这样太没有意思,于是从尺子上随意拿走了 k 个橡皮。令她惊讶的事
情发生了: 尺子依然保持着平衡!
     萱萱是一个善于思考的孩子,她当然不对尺子依然保持平衡感到吃惊,因为这
只是一个 偶然的事件罢了。令她感兴趣的是,花花有多少种拿走 k 个橡皮的方法
,使得尺子依然保 持平衡?
当然,为了简化问题,她不得不做一些牺牲——假设所有橡皮都是拥有相同质量的
 质点。但即使是这样,她也没能计算出这个数目。放学后,她把这个问题交给了她
的哥哥/ 姐姐——Hibarigasaki 学园学生会会长,也就是你。当然,由于这个问题
的答案也许会过于 庞大,你只需要告诉她答案 mod p 的值。

Input

第一行,一个正整数,表示数据组数 T(萱萱向你询问的次数)。

  接下来 T 行,每行 3 个正整数 n, k, p。 

Output

共 T 行,每行一个正整数,代表你得出的对应问题的答案。

Sample Input

10
6 5 10000
4 1 10000
9 6 10000
4 6 10000
5 1 10000
8318 10 9973
9862 9 9973
8234 9 9973
9424 9 9973
9324 9 9973

Sample Output

73
1
920
8
1
4421
2565
0
446
2549

HINT

T <= 20,1 <= n <= 10000,1 <= k <= 10,2 <= p <= 10000,且 k <= 2n+1。

Source

BZOJ 3612: [Heoi2014]平衡( dp )的更多相关文章

  1. BZOJ 3612: [Heoi2014]平衡

    3612: [Heoi2014]平衡 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 283  Solved: 219[Submit][Status][ ...

  2. bzoj 3612 [Heoi2014]平衡——整数划分(dp)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3612 因为力矩的缘故,变成了整数划分. 学习到了整数划分.就是那个图一样的套路.https: ...

  3. bzoj 3612: [Heoi2014]平衡【整数划分dp】

    其实就是-n~n中求选k个不同的数,和为0的方案数 学到了新姿势叫整数划分,具体实现是dp 详见:https://blog.csdn.net/Vmurder/article/details/42551 ...

  4. 洛谷P4104 [HEOI2014]平衡(dp 组合数学)

    题意 题目链接 Sol 可以把题目转化为从\([1, 2n + 1]\)中选\(k\)个数,使其和为\((n+1)k\). 再转化一下:把\((n+1)k\)划分为\(k\)个数,满足每个数在范围在\ ...

  5. P4104 [HEOI2014]平衡

    友情提醒:取模太多真的会TLE!!! P4104 [HEOI2014]平衡 题解 本题属于 DP-整数划分 类问题中的 把整数 n 划分成 k 个不相同不大于 m 的正整数问题 设置DP状态  f[ ...

  6. [HEOI2014]平衡

    [HEOI2014]平衡 转化为求选择k个数,和为(n+1)*k的方案数 保证,每个数[1,2*n+1]且最多选择一次. 限制k个很小,所以用整数划分的第二种方法 f[i][j],用了i个,和为j 整 ...

  7. BZOJ3612 [Heoi2014]平衡 整数划分

    [Heoi2014]平衡 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 348  Solved: 273[Submit][Status][Discus ...

  8. bzoj 3611 [Heoi2014]大工程(虚树+DP)

    3611: [Heoi2014]大工程 Time Limit: 60 Sec  Memory Limit: 512 MBSubmit: 408  Solved: 190[Submit][Status] ...

  9. bzoj 3611[Heoi2014]大工程 虚树+dp

    题意: 给一棵树 每次选 k 个关键点,然后在它们两两之间 新建 C(k,2)条 新通道. 求: 1.这些新通道的代价和 2.这些新通道中代价最小的是多少 3.这些新通道中代价最大的是多少 分析:较常 ...

随机推荐

  1. CC++初学者编程教程(1) Visual Stduio2010开发环境搭建

    Visual Studio是微软公司推出的开发环境.是目前最流行的Windows平台应用程序开发环境. Visual Studio 2010版本于2010年4月12日上市,其集成开发环境(IDE)的界 ...

  2. sublime text 插件开发

    前言:术语和参考资料 sublime text 2的扩展模式相当的丰富.有多种方法可以修改语法高亮模式以及所有的菜单等.它还可以创建一个新的build系统,自动补全,语言定义,代码片段,宏定义,快捷键 ...

  3. JavaScript对css样式表操作

    CSS样式表3种方式: 内嵌:写在html标签中的样式 :如:<p style="width:100px"> 内嵌</p> 内联:写在html 中<h ...

  4. IE 11 无法访问某些不兼容性视图的解决方法

    今天下午部署公司的项目时,用IE 11只能加载到JSP页面的静态元素,其中下拉文本框的信息获取不到, 后来,发现是IE 11不兼容的原因,于是,在菜单条“工具”——“兼容性视图设置”,将不兼容页面的网 ...

  5. 关于Oracle将小于1的数字to_char后丢掉0的解决办法

    SQL代码如下: select rtrim(to_char(0.11, 'fm9990.99'), '.') from dual;其中0.11为需要to_char的数字fm去掉字符串前面的空格9990 ...

  6. BZOJ 1146: [CTSC2008]网络管理Network( 树链剖分 + 树状数组套主席树 )

    树链剖分完就成了一道主席树裸题了, 每次树链剖分找出相应区间然后用BIT+(可持久化)权值线段树就可以完成计数. 但是空间问题很严重....在修改时不必要的就不要新建, 直接修改原来的..详见代码. ...

  7. Spring学习之常用注解(转)

    使用注解来构造IoC容器 用注解来向Spring容器注册Bean.需要在applicationContext.xml中注册<context:component-scan base-package ...

  8. 在Eclipse中使用Maven构建SpringMVC项目

    环境搭建 安装JDK, Eclipse, Tomcat等 – 请参考网上常见攻略. 安装Maven: 下载需要的Maven 版本( http://maven.apache.org/download.c ...

  9. codeforces 55D. Beautiful numbers 数位dp

    题目链接 一个数, 他的所有位上的数都可以被这个数整除, 求出范围内满足条件的数的个数. dp[i][j][k], i表示第i位, j表示前几位的lcm是几, k表示这个数mod2520, 2520是 ...

  10. Less基础教程

    Less基础教程 less是较早出现的css预处理器. LESS API 参考 安装和使用 安装比较简单,通过nmp或bower安装即可. npm install less -g bower inst ...