HDU 5728 - PowMod

题意:
    定义: k = ∑(i=1,m) φ(i∗n) mod 1000000007

给出: n,m,p ,且 n 无平方因子

求: ans= k^(k^(k...k)) mod p  (k有无限个)
    
分析:

欧拉函数 + 指数循环节
    
    第一部分 求出 k.
          定理: 1.欧拉函数是非完全积性函数: φ(m*n) = φ(n)*φ(m) , 当且仅当GCD(n,m) = 1.
          应用:
              ∑(i=1,m)φ(i*n) = φ(pi) * ∑(i=1,m)φ(i*n/pi) + ∑(i=1,m/pi)φ(i*n) ; (n无平方因子数) ,可自行推导
    第二部分
          应用指数循环节化无限为有限,具体实现为递归操作
        
         指数循环节: A^x = A^(x % φ(C) + φ(C)) (mod C)  (x >= φ(C))

 #include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int MOD= ;
const int MAXN=1e7;
int euler[MAXN+];
long long sum[MAXN+];
long long k,n,m,p;
void GetEuler()
{
memset(euler,,sizeof(euler));
euler[]=;
for(int i = ;i <= MAXN;i++)
if(!euler[i])
for(int j = i;j <= MAXN;j += i)
{
if(!euler[j]) euler[j]=j;
euler[j] = euler[j] / i * (i-);
}
sum[]=;
for(int i = ;i <=MAXN; i++)
sum[i] = (sum[i-] + euler[i]) % MOD;
}
long long Get_K(long long n,long long m)
{
if(m==) return ;
if(m==) return euler[n];
if(n==) return sum[m];
if(euler[n]==n-) return (euler[n]*Get_K(,m)%MOD + Get_K(n,m/n))%MOD;
for(int i=;i<MAXN;i++)
if(n%i==)
return (euler[i] * Get_K(n/i,m)%MOD + Get_K(n,m/i) ) % MOD;
}
long long PowMod(long long a,long long b, long long mod)
{
long long r = ;
while(b)
{
if(b&) r = (r*a)%mod;
a= (a*a)%mod;
b>>=;
}
return r;
}
long long Cal(long long k, long long p)
{
if( p == ) return k&;//mod φ(p)
return PowMod(k,Cal(k,euler[p])+euler[p],p);//递归的计算ans,递归出口为φ(p)=1
}
int main()
{
GetEuler();
while(~scanf("%lld%lld%lld",&n,&m,&p))
{
k = Get_K(n,m);
printf("%lld\n",Cal(k,p));
}
}
/*
欧拉函数:
对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目。 例如euler(8)=4,因为1,3,5,7均和8互质。 通式:
对于一个正整数N的素数幂分解 N = (P1^q1) * (P2^q2) * ...* (Pn^qn).
φ(1) = 1.
φ(N) = N * (1-1/P1) * (1-1/P2) *...* (1-1/Pn). 定理:
1.欧拉函数是非完全积性函数: φ(m*n) = φ(n)*φ(m) , 当且仅当GCD(n,m) = 1. 2.一个数的所有质因子之和是 euler(n)*n/2. 3.若n是素数p的k次幂,φ(n)=p^k-p^(k-1)=(p-1)p^(k-1),因为除了p的倍数外,其他数都跟n互质. 特殊性质:
1.当n为奇数时,φ(2n) = φ(n).
2.对于质数p,φ(p) = p - 1
3.除了N=2,φ(N)都是偶数. 指数循环节:
A^x = A^(x % φ(C) + φ(C)) (mod C) (x >= φ(C)) 定理1 应用:
∑(i=1,m)φ(i*n) = φ(pi) * ∑(i=1,m)φ(i*n/pi) + ∑(i=1,m/pi)φ(i*n) ; (n无平方因子数) */

HDU 5728 - PowMod的更多相关文章

  1. HDU - 5728:PowMod (欧拉函数&指数循环节)

    Declare: k=∑ m i=1 φ(i∗n) mod 1000000007 k=∑i=1mφ(i∗n) mod 1000000007 n n is a square-free number. φ ...

  2. HDU 5278 PowMod 数论公式推导

    题意:中文题自己看吧 分析:这题分两步 第一步:利用已知公式求出k: 第二步:求出k然后使用欧拉降幂公式即可,欧拉降幂公式不需要互质(第二步就是BZOJ3884原题了) 求k的话就需要构造了(引入官方 ...

  3. 徐州赛区网络预赛 D Easy Math

    比赛快结束的适合看了一下D题,发现跟前几天刚刚做过的HDU 5728 PowMod几乎一模一样,当时特兴奋,结果一直到比赛结束都一直WA.回来仔细一琢磨才发现,PowMod这道题保证了n不含平方因子, ...

  4. HDU 4059 容斥原理+快速幂+逆元

    E - The Boss on Mars Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64 ...

  5. HDU 5793 - A Boring Question

    HDU 5793 - A Boring Question题意: 计算 ( ∑(0≤K1,K2...Km≤n )∏(1≤j<m) C[Kj, Kj+1]  ) % 1000000007=? (C[ ...

  6. HDU 4633 Who's Aunt Zhang (Polya定理+快速幂)

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=4633 典型的Polya定理: 思路:根据Burnside引理,等价类个数等于所有的置换群中的不动点的个 ...

  7. HDU 6187 Destroy Walls (思维,最大生成树)

    HDU 6187 Destroy Walls (思维,最大生成树) Destroy Walls *Time Limit: 8000/4000 MS (Java/Others) Memory Limit ...

  8. HDU 6143 - Killer Names | 2017 Multi-University Training Contest 8

    /* HDU 6143 - Killer Names [ DP ] | 2017 Multi-University Training Contest 8 题意: m个字母组成两个长为n的序列,两序列中 ...

  9. HDU 6088 - Rikka with Rock-paper-scissors | 2017 Multi-University Training Contest 5

    思路和任意模数FFT模板都来自 这里 看了一晚上那篇<再探快速傅里叶变换>还是懵得不行,可能水平还没到- - 只能先存个模板了,这题单模数NTT跑了5.9s,没敢写三模数NTT,可能姿势太 ...

随机推荐

  1. poj1511/zoj2008 Invitation Cards(最短路模板题)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Invitation Cards Time Limit: 5 Seconds    ...

  2. DOM2定位与高宽类属性专题学习【DOM专题学习系列(一)】

    网页可见区域宽: document.body.clientWidth;网页可见区域高: document.body.clientHeight;网页可见区域宽: document.body.offset ...

  3. MongoDB监控一 mongostat

    mongostat命令                                                               mongostat可以提供mongod和mongos ...

  4. python连接postgresql数据库

    python可以通过第三方模块连接postgresql. 比较有名的有psycopg2  和python3-postgresql (一)psycopg2 ubuntu下安装 sudo apt-get ...

  5. 利用matlab实现以下功能:将一个正整数分解质因数。例如:输入90,打印出90=2*3*3*5。

    程序思路: 对n进行分解质因数,应先找到一个最小的质数k,从2开始,然后按下述步骤完成: (1)如果这个质数恰等于n,则说明分解质因数的过程已经结束,打印出即可. (2)如果n不等于k,则应打印出k的 ...

  6. wget 测试cdn

    可以通过wget 或curl 指定代理ip来访问同一个链接的不同cdn响应页面.来测试不同cdn间的数据同步问题.

  7. 开源C/C++网络库比较

    在开源的C/C++网络库中, 常用的就那么几个, 在业界知名度最高的, 应该是ACE了, 不过是个重量级的大家伙, 轻量级的有libevent, libev, 还有 Boost的ASIO. ACE是一 ...

  8. linux系统下,11款常见远程桌面控制软件

    linux系统下,11款常见远程桌面控制软件 一. Grdc 它是一个用GTK+编写的,适用于gnome桌面环境的远程桌面访问软件.看图: 常见功能: 1.提供全屏,窗口化的远程控制.支持高分辨率下的 ...

  9. PV与并发之间换算的算法 换算公式

  10. UESTC_Judgment Day CDOJ 11

    Today is the judgment day. The world is ending and all man will pay for their guilt and sin. Now the ...