Drainage Ditches
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 64044   Accepted: 24718

Description

Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch.
Farmer John knows not only how many gallons of water each ditch can
transport per minute but also the exact layout of the ditches, which
feed out of the pond and into each other and stream in a potentially
complex network.

Given all this information, determine the maximum rate at which
water can be transported out of the pond and into the stream. For any
given ditch, water flows in only one direction, but there might be a way
that water can flow in a circle.

Input

The input includes several cases.
For each case, the first line contains two space-separated integers, N
(0 <= N <= 200) and M (2 <= M <= 200). N is the number of
ditches that Farmer John has dug. M is the number of intersections
points for those ditches. Intersection 1 is the pond. Intersection point
M is the stream. Each of the following N lines contains three integers,
Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the
intersections between which this ditch flows. Water will flow through
this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the
maximum rate at which water will flow through the ditch.

Output

For each case, output a single integer, the maximum rate at which water may emptied from the pond.

Sample Input

5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10

Sample Output

50
代码:醉醉的超时。。。入门题。两种方法:
代码1:
 #include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#include<queue>
#include<algorithm>
#define mem(x,y) memset(x,y,sizeof(x))
#include<queue>
using namespace std;
typedef long long LL;
const int INF=0x3f3f3f3f;
const int MAXN=;
int map[MAXN][MAXN];
queue<int>dl;
int vis[MAXN],pre[MAXN];
int N;
bool bfs(int s,int e){
mem(vis,);
mem(pre,);
while(!dl.empty())dl.pop();
vis[s]=;dl.push(s);
int a;
while(!dl.empty()){
a=dl.front();dl.pop();
if(a==e)return true;
for(int i=;i<=N;i++){
if(!vis[i]&&map[a][i]){
vis[i]=;
dl.push(i);
pre[i]=a;
}
}
}
return false;
}
LL maxflow(int s,int e){
LL flow=;
while(bfs(s,e)){
int r=e;
int temp=INF;
while(r!=s){
temp=min(temp,map[pre[r]][r]);
r=pre[r];
}
r=e;
while(r!=s){
map[pre[r]][r]-=temp;
map[r][pre[r]]+=temp;
r=pre[r];//这句话不能少。。
}
flow+=temp;
}
return flow;
}
int main(){
int M;
while(~scanf("%d%d",&M,&N)){
mem(map,);
int u,v,w;
while(M--){
scanf("%d%d%d",&u,&v,&w);
map[u][v]+=w;
}
printf("%I64d\n",maxflow(,N));
}
return ;
}

代码2:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#include<queue>
#include<algorithm>
#define mem(x,y) memset(x,y,sizeof(x))
using namespace std;
const int INF=0x3f3f3f3f;
typedef long long LL;
const int MAXN=210;
const int MAXM=2020;
int head[MAXM];
int vis[MAXN],dis[MAXN];
int edgnum;
struct Node{
int from,to,next,cup,flow;
};
Node edg[MAXM];
queue<int>dl;
void initial(){
mem(head,-1);edgnum=0;
}
void add(int u,int v,int w){
Node E={u,v,head[u],w,0};
edg[edgnum]=E;
head[u]=edgnum++;
E={v,u,head[v],0,0};
edg[edgnum]=E;
head[v]=edgnum++;
}
bool bfs(int s,int e){
mem(vis,0);mem(dis,-1);
while(!dl.empty())dl.pop();
vis[s]=1;dis[s]=0;dl.push(s);
while(!dl.empty()){
int u=dl.front();dl.pop();
for(int i=head[u];i!=-1;i=edg[i].next){
Node v=edg[i];
if(!vis[v.to]&&v.cup>v.flow){//应该是>
vis[v.to]=1;
dis[v.to]=dis[u]+1;
if(v.to==e)return true;
dl.push(v.to);
}
}
}
return false;
}
int dfs(int x,int la,int e){
if(x==e||la==0)return la;
int temp;
LL flow=0;
for(int i=head[x];i!=-1;i=edg[i].next){
Node &v=edg[i];
if(dis[v.to]==dis[x]+1&&(temp=dfs(v.to,min(la,v.cup-v.flow),e))>0){//这里也应该要>
v.flow+=temp;
edg[i^1].flow-=temp;
la-=temp;
flow+=temp;
if(la==0)break;//这个要判断
}
}
return flow;
}
LL maxflow(int s,int e){
LL flow=0;
while(bfs(s,e)){
flow+=dfs(s,INF,e);
}
return flow;
}
int main(){
int N,M;
while(~scanf("%d%d",&N,&M)){
initial();
int u,v,w;
while(N--){
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
}
printf("%I64d\n",maxflow(1,M));
}
return 0;
}

Drainage Ditches(最大流)的更多相关文章

  1. Poj 1273 Drainage Ditches(最大流 Edmonds-Karp )

    题目链接:poj1273 Drainage Ditches 呜呜,今天自学网络流,看了EK算法,学的晕晕的,留个简单模板题来作纪念... #include<cstdio> #include ...

  2. poj 1273 Drainage Ditches 最大流入门题

    题目链接:http://poj.org/problem?id=1273 Every time it rains on Farmer John's fields, a pond forms over B ...

  3. POJ 1273 || HDU 1532 Drainage Ditches (最大流模型)

    Drainage DitchesHal Burch Time Limit 1000 ms Memory Limit 65536 kb description Every time it rains o ...

  4. TZOJ 4085 Drainage Ditches(最大流)

    描述 Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. Th ...

  5. POJ 1273 - Drainage Ditches - [最大流模板题] - [EK算法模板][Dinic算法模板 - 邻接表型]

    题目链接:http://poj.org/problem?id=1273 Time Limit: 1000MS Memory Limit: 10000K Description Every time i ...

  6. HDU1532 Drainage Ditches —— 最大流(sap算法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1532 Drainage Ditches Time Limit: 2000/1000 MS (Java/ ...

  7. poj-1273 Drainage Ditches(最大流基础题)

    题目链接: Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 67475   Accepted ...

  8. hdu 1532 Drainage Ditches(最大流)

                                                                                            Drainage Dit ...

  9. POJ-1273 Drainage Ditches 最大流Dinic

    Drainage Ditches Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 65146 Accepted: 25112 De ...

  10. POJ1273:Drainage Ditches(最大流入门 EK,dinic算法)

    http://poj.org/problem?id=1273 Description Every time it rains on Farmer John's fields, a pond forms ...

随机推荐

  1. c#软件工程师笔试题

    近来有打算重新找工作,还没提离职,投了几家公司简历,其中一家比较中意的公司给发了面试题,其实,好像是好几天前的事了,主要是Gmail邮箱很少用,所以一直都没去看,今天看到题目给解了. 题目如下: 题目 ...

  2. 关于TableViewCell高度自适应问题的整理

    TableViewCell高度自适应在网上有很多资料,我只想找出最最最简单的一种方法. 首先梳理一下思路.说到TableViewCell我们第一个想到的问题或许就是cell的复用问题. 1.  [se ...

  3. C#高级编程技术复习一

    从基本的Socket编程进入 (注意:这是转的一篇2011年的文章,有些知识可能该更新了!) 这一篇文章,我将图文并茂地介绍Socket编程的基础知识,我相信,如果你按照步骤做完实验,一定可以对Soc ...

  4. deque(双端队列)

    deque 是对queue的改进,增加了 push_front 和 pop_front 函数 , 和 双向链表作用差不多: 这里就不多讲了.可以参考: List(双向链表)

  5. BZOJ 3223: Tyvj 1729 文艺平衡树(splay)

    速度居然进前十了...第八... splay, 区间翻转,用一个类似线段树的lazy标记表示是否翻转 ------------------------------------------------- ...

  6. Hadoop学习笔记(4)hadoop集群模式安装

    具体的过程参见伪分布模式的安装,集群模式的安装和伪分布模式的安装基本一样,只有细微的差别,写在下面: 修改masers和slavers文件: 在hadoop/conf文件夹中的配置文件中有两个文件ma ...

  7. 磁盘性能,你可能不知道的IOPS计算方法

    每个I/O 请求到磁盘都需要若干时间.主要是因为磁盘的盘边必须旋转,机头必须寻道.磁盘的旋转常常被称为”rotational delay”(RD),机头的移动称为”disk seek”(DS).一个I ...

  8. 5.6.3 String类型

    String类型是字符串的对象包装类型,可以像下面这样使用String构造函数来创建. var stringObject = new String("hello world"); ...

  9. hdu 4619 Warm up 2 二分图匹配

    题目链接 给两种长方形, 水平的和垂直的, 大小都为1*2, n个水平的, m个垂直的, 给出它们的坐标. 水平的和垂直的可以相互覆盖, 但是同种类型的没有覆盖. 去掉一些长方形, 使得剩下的全部都没 ...

  10. ios 学习笔记(8) 控件 按钮(UIButton)的使用方法

    在实际开发中,对于开发者来说,更多的还是使用“自定义”按钮.将“按钮”对象的类型设置成UIButtonTypeCustom.这样一来,按钮的所有元素都将由开发者来配置和自定义. 对于一个自定义按钮来说 ...