(转) [组合数学] 第一类,第二类Stirling数,Bell数
一.第二类Stirling数
定理:第二类Stirling数S(p,k)计数的是把p元素集合划分到k个不可区分的盒子里且没有空盒子的划分个数。
证明:元素在哪些盒子并不重要,唯一重要的是各个盒子里装的是什么,而不管哪个盒子装了什么。
递推公式有:S(p,p)=1 (p>=0) S(p,0)=0 (p>=1) S(p,k)=k*S(p-1,k)+S(p-1,k-1) (1<=k<=p-1) 。考虑将前p个正整数,1,2,.....p的集合作为要被划分的集合,把
{1,2,.....p}分到k个非空且不可区分的盒子的划分有两种情况:
(1)那些使得p自己单独在一个盒子的划分,存在有S(p-1,k-1)种划分个数
(2)那些使得p不单独自己在一个盒子的划分,存在有 k*S(p-1,k)种划分个数
考虑第二种情况,p不单独自己在一个盒子,也就是p和其他元素在一个集合里面,也就是说在没有放p之前,有p-1个元素已经分到了k个非空且不可区分的盒子里面(划
分个数为S(p-1,k),那么现在问题是把p放在哪个盒子里面呢,有k种选择,所以存在有k*S(p-1,k)。
模板:
注意:要用long long类型,当元素个数>20,就超int类型了。
扩展:k! *S(p,k) 计数的是把p元素集合划分到k个可区分的盒子里且没有空盒子的划分个数。
二.Bell数
定理:Bell数B(p)是将p元素集合分到非空且不可区分盒子的划分个数(没有说分到几个盒子里面)。
B(p)=S(p,0)+S(p,1)+.....+S(p,k)
所以要求Bell数就要先求出第二类Stiring数。
三.第一类Stirling数
定理:第一类Stirling数s(p,k)计数的是把p个对象排成k个非空循环排列的方法数。
证明:把上述定理叙述中的循环排列叫做圆圈。递推公式为:
s(p,p)=1 (p>=0) 有p个人和p个圆圈,每个圆圈就只有一个人
s(p,0)=0 (p>=1) 如果至少有1个人,那么任何的安排都至少包含一个圆圈
s(p,k)=(p-1)*s(p-1,k)+s(p-1,k-1)
设人被标上1,2,.....p。将这p个人排成k个圆圈有两种情况。第一种排法是在一个圆圈里只有标号为p的人自己,排法有s(p-1,k-1)个。第二种排法中,p至少和另一个人在一
个圆圈里。这些排法可以通过把1,2....p-1排成k个圆圈再把p放在1,2....p-1任何一人的左边得到,因此第二种类型的排法共有(p-1)*s(p-1,k)种排法。
在证明中我们所做的就是把{1,2,...,p}划分到k个非空且不可区分的盒子,然后将每个盒子中的元素排成一个循环排列。
(转) [组合数学] 第一类,第二类Stirling数,Bell数的更多相关文章
- Stirling数,Bell数,Catalan数,Bernoulli数
组合数学的实质还是DP,但是从通式角度处理的话有利于FFT等的实现. 首先推荐$Candy?$的球划分问题集合: http://www.cnblogs.com/candy99/p/6400735.ht ...
- 自然数幂和——第一类Stirling数和第二类Stirling数
第一类Stirling数 首先设 $$S_k(n)=\sum_{i=0}^ni^k$$ 根据第一类斯特林数的定义(P是排列数,C是组合数,s是Stirling) $$C_n^k={P_n^k\over ...
- 第一类和第二类Stirling数
做了老是忘…… 实际问题: 找维基百科.百度百科…… 第一类Stirling数 n个元素构成m个圆排列 S(n,m)=S(n-1,m-1)+(n-1)*S(n-1,m) 初始 S(0,0)=1 S(n ...
- Bell数和Stirling数
前面说到了Catalan数,现在来了一个Bell数和Stirling数.什么是Bell数,什么是Stirling数呢?两者的关系如何,有用于解决什么算法问题呢? Bell数是以Bell这个人命名的,组 ...
- [总结] 第二类Stirling数
上一道例题 我们来介绍第二类Stirling数 定义 第二类Stirling数实际上是集合的一个拆分,表示将n个不同的元素拆分成m个集合的方案数,记为 或者 .和第一类Stirling数不同的是,集合 ...
- 第二类Stirling数
第二类斯特林数 第二类Stirling数:S2(p, k) 1.组合意义:第二类Stirling数计数的是把p个互异元素划分为k个非空集合的方法数 2.递推公式: S2(0, 0) = 1 S2(p, ...
- Bell(hdu4767+矩阵+中国剩余定理+bell数+Stirling数+欧几里德)
Bell Time Limit:3000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Status ...
- 第二类Stirling数初探 By cellur925
上午noi.ac崩崩崩了,栽在组合数学上,虽说最后在辰哥&Chemist的指导下A掉了此题,也发现自己组合数学太弱了qwq. 在luogu上找题,结果找到了一个第二类斯特林数的题(还是双倍经验 ...
- lightOJ 1326 Race(第二类Stirling数)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1326 题意:有n匹马赛跑.问有多少种不同的排名结果.可以有多匹马的排名相同. 思路:排 ...
随机推荐
- java的集合类【Map(映射)、List(列表)与Set(集)比较】
https://baike.baidu.com/item/java%E9%9B%86%E5%90%88%E7%B1%BB/4758922?fr=aladdin https://www.cnblogs. ...
- 用java输出杨辉三角
杨辉三角:它的两个边都是1,内部其它都是肩上两个数的和 第一种: package aaa; public class YangHui { public static void main(String[ ...
- To avoid slowing down lookups on a near-full table, we resize the table when it's USABLE_FRACTION (currently two-thirds) full.
https://github.com/python/cpython/blob/3.8/Objects/dictobject.c
- ubuntu安装IntelliJ Idea及图标创建
一.下载并解压安装 二.创建桌面程序 1. cd /usr/local/applications/ 2. vi idea.desktop 3. 内容如下 [Desktop Entry] Name=In ...
- return语句——学习笔记
return,可以提前结束其所在函数. 函数内不写,会自动加上return. 非引用返回: 引用返回:a=3,b=3 注意事项: 两种修改字符串某一位置值的方式:
- dig命令不能使用(-bash: dig: command not found)
解决方式: 直接使用yum进行安装: yum -y install bind-utils
- 十一、postman接口测试(安装nodejs和npm)
cmder安装:https://cmder.net/ node安装:https://nodejs.org/zh-cn/ 打开cmd命令,在命令提示窗输入 npm install -g cnpm --r ...
- Spring的@ExceptionHandler和@ControllerAdvice统一处理异常
之前敲代码的时候,避免不了各种try..catch, 如果业务复杂一点, 就会发现全都是try…catch try{ ..........}catch(Exception1 e){ ......... ...
- 字符分隔符'\1'(\u0001)的困惑
在产生一个随机字符序列时,当要生成的字符串数据为8位时,会不时的在后面加上"\u0001",而多于8位时,例如9位,则不会出现该问题. mark一下!!!!
- mysql登录指令
mysql -h 192.168.1.124 -u root -p -h后加mysql的ip,-u加用户名,-p会弹出输入密码