一.第二类Stirling数

定理:第二类Stirling数S(p,k)计数的是把p元素集合划分到k个不可区分的盒子里且没有空盒子的划分个数。

证明:元素在哪些盒子并不重要,唯一重要的是各个盒子里装的是什么,而不管哪个盒子装了什么。

递推公式有:S(p,p)=1 (p>=0)         S(p,0)=0  (p>=1)         S(p,k)=k*S(p-1,k)+S(p-1,k-1)   (1<=k<=p-1) 。考虑将前p个正整数,1,2,.....p的集合作为要被划分的集合,把

{1,2,.....p}分到k个非空且不可区分的盒子的划分有两种情况:

(1)那些使得p自己单独在一个盒子的划分,存在有S(p-1,k-1)种划分个数

(2)那些使得p不单独自己在一个盒子的划分,存在有 k*S(p-1,k)种划分个数

考虑第二种情况,p不单独自己在一个盒子,也就是p和其他元素在一个集合里面,也就是说在没有放p之前,有p-1个元素已经分到了k个非空且不可区分的盒子里面(划

分个数为S(p-1,k),那么现在问题是把p放在哪个盒子里面呢,有k种选择,所以存在有k*S(p-1,k)。

模板:

注意:要用long long类型,当元素个数>20,就超int类型了。

扩展:k! *S(p,k) 计数的是把p元素集合划分到k个可区分的盒子里且没有空盒子的划分个数。

二.Bell数

定理:Bell数B(p)是将p元素集合分到非空且不可区分盒子的划分个数(没有说分到几个盒子里面)。

B(p)=S(p,0)+S(p,1)+.....+S(p,k)

所以要求Bell数就要先求出第二类Stiring数。

三.第一类Stirling数

定理:第一类Stirling数s(p,k)计数的是把p个对象排成k个非空循环排列的方法数。

证明:把上述定理叙述中的循环排列叫做圆圈。递推公式为:

s(p,p)=1 (p>=0)    有p个人和p个圆圈,每个圆圈就只有一个人

s(p,0)=0 (p>=1)    如果至少有1个人,那么任何的安排都至少包含一个圆圈

s(p,k)=(p-1)*s(p-1,k)+s(p-1,k-1)

设人被标上1,2,.....p。将这p个人排成k个圆圈有两种情况。第一种排法是在一个圆圈里只有标号为p的人自己,排法有s(p-1,k-1)个。第二种排法中,p至少和另一个人在一

个圆圈里。这些排法可以通过把1,2....p-1排成k个圆圈再把p放在1,2....p-1任何一人的左边得到,因此第二种类型的排法共有(p-1)*s(p-1,k)种排法。

在证明中我们所做的就是把{1,2,...,p}划分到k个非空且不可区分的盒子,然后将每个盒子中的元素排成一个循环排列。

 

(转) [组合数学] 第一类,第二类Stirling数,Bell数的更多相关文章

  1. Stirling数,Bell数,Catalan数,Bernoulli数

    组合数学的实质还是DP,但是从通式角度处理的话有利于FFT等的实现. 首先推荐$Candy?$的球划分问题集合: http://www.cnblogs.com/candy99/p/6400735.ht ...

  2. 自然数幂和——第一类Stirling数和第二类Stirling数

    第一类Stirling数 首先设 $$S_k(n)=\sum_{i=0}^ni^k$$ 根据第一类斯特林数的定义(P是排列数,C是组合数,s是Stirling) $$C_n^k={P_n^k\over ...

  3. 第一类和第二类Stirling数

    做了老是忘…… 实际问题: 找维基百科.百度百科…… 第一类Stirling数 n个元素构成m个圆排列 S(n,m)=S(n-1,m-1)+(n-1)*S(n-1,m) 初始 S(0,0)=1 S(n ...

  4. Bell数和Stirling数

    前面说到了Catalan数,现在来了一个Bell数和Stirling数.什么是Bell数,什么是Stirling数呢?两者的关系如何,有用于解决什么算法问题呢? Bell数是以Bell这个人命名的,组 ...

  5. [总结] 第二类Stirling数

    上一道例题 我们来介绍第二类Stirling数 定义 第二类Stirling数实际上是集合的一个拆分,表示将n个不同的元素拆分成m个集合的方案数,记为 或者 .和第一类Stirling数不同的是,集合 ...

  6. 第二类Stirling数

    第二类斯特林数 第二类Stirling数:S2(p, k) 1.组合意义:第二类Stirling数计数的是把p个互异元素划分为k个非空集合的方法数 2.递推公式: S2(0, 0) = 1 S2(p, ...

  7. Bell(hdu4767+矩阵+中国剩余定理+bell数+Stirling数+欧几里德)

    Bell Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status  ...

  8. 第二类Stirling数初探 By cellur925

    上午noi.ac崩崩崩了,栽在组合数学上,虽说最后在辰哥&Chemist的指导下A掉了此题,也发现自己组合数学太弱了qwq. 在luogu上找题,结果找到了一个第二类斯特林数的题(还是双倍经验 ...

  9. lightOJ 1326 Race(第二类Stirling数)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1326 题意:有n匹马赛跑.问有多少种不同的排名结果.可以有多匹马的排名相同. 思路:排 ...

随机推荐

  1. java的集合类【Map(映射)、List(列表)与Set(集)比较】

    https://baike.baidu.com/item/java%E9%9B%86%E5%90%88%E7%B1%BB/4758922?fr=aladdin https://www.cnblogs. ...

  2. 用java输出杨辉三角

    杨辉三角:它的两个边都是1,内部其它都是肩上两个数的和 第一种: package aaa; public class YangHui { public static void main(String[ ...

  3. To avoid slowing down lookups on a near-full table, we resize the table when it's USABLE_FRACTION (currently two-thirds) full.

    https://github.com/python/cpython/blob/3.8/Objects/dictobject.c

  4. ubuntu安装IntelliJ Idea及图标创建

    一.下载并解压安装 二.创建桌面程序 1. cd /usr/local/applications/ 2. vi idea.desktop 3. 内容如下 [Desktop Entry] Name=In ...

  5. return语句——学习笔记

    return,可以提前结束其所在函数. 函数内不写,会自动加上return. 非引用返回: 引用返回:a=3,b=3 注意事项: 两种修改字符串某一位置值的方式:

  6. dig命令不能使用(-bash: dig: command not found)

    解决方式: 直接使用yum进行安装: yum -y install bind-utils

  7. 十一、postman接口测试(安装nodejs和npm)

    cmder安装:https://cmder.net/ node安装:https://nodejs.org/zh-cn/ 打开cmd命令,在命令提示窗输入 npm install -g cnpm --r ...

  8. Spring的@ExceptionHandler和@ControllerAdvice统一处理异常

    之前敲代码的时候,避免不了各种try..catch, 如果业务复杂一点, 就会发现全都是try…catch try{ ..........}catch(Exception1 e){ ......... ...

  9. 字符分隔符'\1'(\u0001)的困惑

    在产生一个随机字符序列时,当要生成的字符串数据为8位时,会不时的在后面加上"\u0001",而多于8位时,例如9位,则不会出现该问题. mark一下!!!!

  10. mysql登录指令

    mysql -h 192.168.1.124 -u root -p -h后加mysql的ip,-u加用户名,-p会弹出输入密码