积性函数与Dirichlet卷积
转载自https://oi-wiki.org/math/mobius/
积性函数
定义
若 $gcd(x,y)=1$ 且 $f(xy)=f(x)f(y)$,则 $f(n)$ 为积性函数。
性质
若 $f(x)$ 和 $f(y)$ 均为积性函数,则以下函数为积性函数:
$h(x) = f(x^p)$
$h(x) = f^p(x)$
$h(x) = g(x)f(x)$
$h(x) = \sum_{d|x} f(d)g(\frac{x}{d})$
后面两条性质非常重要,会经常用。它说明了两个积性函数的乘积仍是积性函数、两个积性函数的Dirichlet卷积仍是积性函数。
例如,\begin{aligned}
h(x_1x_2) &= \sum_{d|x_1x_2} f(d)g(\frac{x_1x_2}{d}) \\
&= f(1)g(15) + f(3)g(5) + f(5)g(3) + f(15)g(1) \\
&= [f(1)g(3) + f(3)g(1)]*[f(1)g(5)+f(5)g(1)] \\
&= h(3)h(5)
\end{aligned}
例子
- 单位函数:$\varepsilon(n) = [n=1]$
- 恒等函数:$id_k(n) = n^k$,$id_1(n)$ 通常简记作 $id(n)$
- 常数函数:$1(n)=1$
- 除数函数:$\sigma_k(n) = \sum_{d|n}d^k$,$\sigma_0(n)$ 通常记作 $d(n)$ 或者 $\tau(n)$(表示约数的个数),$\sigma_1(n)$ 通常记作 $\sigma(n)$
- 莫比乌斯函数:$\mu(n)$
Dirichlet卷积
定义
定义两个数论函数 $f,g$的Dirichlet卷积为
$$(f*g)(n) = \sum_{d|n}f(d)g(\frac{n}{d})$$
性质
Dirichlet卷积满足交换律和结合律
其中 $\varepsilon$ 为Dirichlet卷积的单位元(任何函数卷 $\varepsilon$ 都为本身)
例子
$\displaystyle \varepsilon = \mu * 1 \Leftrightarrow \varepsilon (n) = \sum_{d|n}\mu (d)$
$\displaystyle d = 1*1 \Leftrightarrow d(n) = \sum_{d|n}1$
$\displaystyle \sigma = ID*1 \Leftrightarrow \sigma (n) = \sum_{d|n}d$
$\displaystyle ID = \varphi * 1 \Leftrightarrow ID(n) = \sum _{d|n} \varphi (d)$
$\displaystyle \varphi = \mu * ID \Leftrightarrow \varphi (n) = \sum_{d|n}d\cdot \mu(\frac{n}{d})$
还有一个常用来消 $d$ 的,
$n\cdot d = ID*ID \Leftrightarrow n\cdot d(n) = \sum_{d|n}ID(d) \cdot ID(\frac{n}{d})$
证明
1、证 $\displaystyle \varepsilon (n) = \sum_{d|n}\mu(d)$.
解:设 $\displaystyle n = \prod_{i=1}^k{p_i}^{c_i}, \ {n}' = \prod_{i=1}^k p_i$
那么 $\displaystyle \sum_{d|n}\mu (d) = \sum_{d|{n}'} \mu (d) = \sum_{i=0}^k \binom{k}{i}(-1)^i = (1-1)^k$.
当 $k=0$ 即 $n=1$ 时值为1否则为0,这就证明了 $\displaystyle \sum_{d|n}\mu (d) = [n=1]$.
2、证 $n = \sum_{d|n}\varphi (d)$
解:将 $n$ 质因数分解,$\displaystyle n = \prod_{i=1}^k{p_i}^{c_i}$
首先,因为 $\varphi$ 为积性函数,所以 $\varphi * 1$ 也是积性函数,
所以 $(\varphi * 1)(n) = (\varphi * 1)({p_1}^{c_1}) \cdot (\varphi * 1)({p_2}^{c_2})\cdot ... \cdot (\varphi * 1)({p_k}^{c_k})$.
故我们只要证明当 ${n}' = p^c$ 时,$\displaystyle \varphi *1 = \sum_{d|{n}'} \varphi (\frac{{n}'}{d}) =ID$ 成立即可。
因为 $p$ 是质数,于是 $d = p^0, p^1, ..., p^c$.
因此:
$$\begin{aligned}
\varphi *1 &= \sum_{d|n}\varphi (\frac{n}{d}) \\
&= \sum_{i=0}^c \varphi(p^i) \\
&= 1 + p^0\cdot (p-1) + p^1\cdot (p-1) + ... + p^{c-1}(p-1) \\
&= p^c
\end{aligned}$$
该式子两边同时卷积 $\mu$ 可得 $\varphi = ID * \mu$,即 $\varphi (n) = \sum_{d|n}d\cdot \mu (\frac{n}{d})$
积性函数与Dirichlet卷积的更多相关文章
- 『简单积性函数和dirichlet卷积』
简单积性函数 在学习欧拉函数的时候,相信读者对积性函数的概念已经有了一定的了解.接下来,我们将相信介绍几种简单的积性函数,以备\(dirichlet\)卷积的运用. 定义 数论函数:在数论上,对于定义 ...
- Codeforces E. Bash Plays with Functions(积性函数DP)
链接 codeforces 题解 结论:\(f_0(n)=2^{n的质因子个数}\)= 根据性质可知\(f_0()\)是一个积性函数 对于\(f_{r+1}()\)化一下式子 对于 \[f_{r+1} ...
- 2017 CCPC 杭州 HDU6265B 积性函数
题目链接 http://acm.hdu.edu.cn/downloads/CCPC2018-Hangzhou-ProblemSet.pdf B题 数论题 h(n)=∑ d|n φ(d) × ...
- 积性函数&线性筛&欧拉函数&莫比乌斯函数&因数个数&约数个数和
只会搬运YL巨巨的博客 积性函数 定义 积性函数:对于任意互质的整数a和b有性质f(ab)=f(a)f(b)的数论函数. 完全积性函数:对于任意整数a和b有性质f(ab)=f(a)f(b)的数论函数 ...
- codeforces757E. Bash Plays with Functions(狄利克雷卷积 积性函数)
http://codeforces.com/contest/757/problem/E 题意 Sol 非常骚的一道题 首先把给的式子化一下,设$u = d$,那么$v = n / d$ $$f_r(n ...
- Master of Phi (欧拉函数 + 积性函数的性质 + 狄利克雷卷积)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6265 题目大意:首先T是测试组数,n代表当前这个数的因子的种类,然后接下来的p和q,代表当前这个数的因 ...
- Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和
下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...
- [模板] 积性函数 && 线性筛
积性函数 数论函数指的是定义在正整数集上的实或复函数. 积性函数指的是当 \((a,b)=1\) 时, 满足 \(f(a*b)=f(a)*f(b)\) 的数论函数. 完全积性函数指的是在任何情况下, ...
- Codeforces757E.Bash Plays With Functions(积性函数 DP)
题目链接 \(Description\) q次询问,每次给定r,n,求\(F_r(n)\). \[ f_0(n)=\sum_{u\times v=n}[(u,v)=1]\\ f_{r+1}(n)=\s ...
随机推荐
- SpringCloud项目中使用Nacos作为配置中心
参考:https://blog.csdn.net/qq_33619378/article/details/96991237 Nacos-server启动 这里就不说了 新建配置 在Nacos-Serv ...
- 并查集 + 路径压缩(经典) UVALive 3027 Corporative Network
Corporative Network Problem's Link Mean: 有n个结点,一开始所有结点都是相互独立的,有两种操作: I u v:把v设为u的父节点,edge(u,v)的距离为ab ...
- Prometheus 运维监控
Prometheus 运维监控 1.Prometheus 介绍详解 2.Prometheus 安装部署 3.Prometheus 配置文件详解 4.Prometheus PromSQL 常用资源 5. ...
- python 练习题:请利用Python内置的hex()函数把一个整数转换成十六进制表示的字符串
# -*- coding: utf-8 -*- # 请利用Python内置的hex()函数把一个整数转换成十六进制表示的字符串 n1 = 255 n2 = 1000 print(hex(n1)) pr ...
- 检测代码潜在bug和质量之SonarQube
参数使用 项目分析参数可以在多个地方设置,继承关系如下: 全局分析参数,通过Web UI设置,作用于所有项目(配置–>通用–>通用中设置) 项目分析参数,通过WebUI设置,覆盖全局参数( ...
- python 变量作用域、闭包
先看一个问题: 下面代码输出的结果是0,换句话说,这个fucn2虽然已经用global声明了variable1,但还是没有改变变量的值 def func1(): variable1=0 def fun ...
- python2.7 与python3.X区别
1,print("中文") python2.7,会报错 原因:py2.7用ascll码 解决:2.7头部加入并保存的文件用utf-8编码 # -*- coding: utf-8 ...
- DP之背包
一.01背包: (以下均可用一维来写 即只能选择一次的物品装在一定容积的背包中.f[i][j]表示前i件物品在容积为j时的最大价值. for(int i = 1; i <= n ; i++){ ...
- bugku——蹭网先解开密码(EWSA,hashcat破解wifi握手包)
题目地址:http://ctf.bugku.com/files/77decd384a172b9a2294e6c6acfd48cc/wifi.cap 下载是个.cap的文件,破解过wifi的童鞋肯定知道 ...
- 剑指:包含min函数的栈(min栈)
题目描述 设计一个支持 push,pop,top 等操作并且可以在 O(1) 时间内检索出最小元素的堆栈. push(x)–将元素x插入栈中 pop()–移除栈顶元素 top()–得到栈顶元素 get ...